
www.manaraa.com

IN F O R M A T IO N  T O  U SE R S

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may be 

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken o r indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back of the book.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6” x 9” black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order.

UMI
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

TOWARDS A TRUE SOFTWARE ENGINEERING DISCIPLINE

by

Daniel W. Drew, B.S.

i

I
. THESIS

\ Presented to the Faculty o f
t
| The University of Houston Clear Lake

j in Partial Fulfillment

| o f the Requirements

for the Degree of

j
f>

( MASTER OF SCIENCE
t
!
i

THE UNIVERSITY OF HOUSTON CLEAR LAKE 

December, 1997

Copyright 1997, Daniel W. Drew 
All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

UMI Number: 1387986

Copyright 1997 by Drew, Demi el Wayne
All rights reserved.

E*
I
I
\
ij---------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------------------------------------------
t
j  UMI Microform 1387986
[ Copyright 1998, by UMI Company. All rights reserved.
{
' This microform edition is protected against unauthorized

copying under Title 17, United States Code.

UMI
300 North Zeeb Road 
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

TOWARDS A TRUE SOFTWARE ENGINEERING DISCIPLINE

by

Daniel W. Drew

I -___

APPROVED BY

Sharon Andrews White, Ph. D., Chair

„  V l/  / f y r
Charles McKay, Ed., t$ ., Committee Member—

t - / I

Colin Atkinson, Ph. D., Committee Member

/ ^ 7  __________
Robert N. Ferebee, Ph. D., Associate Dean

bey
Charles McKay, Ed. D., Dean ~

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

f
I
1

DEDICATION

To my wife Karen and my son Galen. Thank you for your support and willingness to 

allow me the time for this achievement. May the obtainment o f this goal bless you in 

return.

I
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

ACKNOWLEDGEMENTS

No accomplishment o f any merit is ever achieved without the aid o f others. The writing of 

this thesis is no different. This thesis is truly the end result o f  years o f support and 

encouragement from many different individuals.

First I would acknowledge my Creator for the talents He has graciously endowed me that 

I am privileged to use. Next my father Dr. Dan Drew for his example and instruction as 

one of my undergraduate instructors and my mother Flowayne Drew for her guidance, 

instruction, and support. From my professional career David Weisman for encouraging 

me and mentoring me in the development o f my technical writing skills. Finally to my 

instructors Dr. Sharon Andrews White, Dr. Colin Atkinson, Dr. Charles McKay, Dr.

■ David Eichmann, and Mr. Kyle Rone for their willingness to teach.

i
tt

!

r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

ABSTRACT

TOWARDS A TRUE SOFTWARE ENGINEERING DISCIPLINE

Daniel W. Drew, M.S.

The University o f Houston - Clear Lake, 1997

Thesis Chair: Sharon Andrews White, Ph.D.

The term “engineering” has been applied to software development for over twenty years 

yet there still is little progress in evolving the industry into a true engineering discipline. A 

fundamental reason for this lack of progress is that the paradigm of software engineering 

f as defined does not completely capture the basic concept o f engineering. This has led to

f software processes and methodologies that do not fully support engineering activities. To

move toward a true software engineering discipline, there must be a basic paradigm shift 

in our understanding of software engineering accompanied with a related evolution of 

software processes and methodologies. Software engineering as it has been defined is 

reviewed and a new definition is presented that incorporates engineering principles 

currently omitted. How this paradigm shift can be implemented through the evolution of 

common processes and methodologies in use today is then illustrated.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

List of Tables

Table o f Contents

V lll

List o f Figures............................................................................................................................. ix

1.0 Introduction............................................................................................................................ 1

1.1 Background.........................................................................................................................1
1.2 A  New Paradigm for Software Engineering....................................................................4

2.0 Software Architectural Development...................................................................................9
2.1 How Does this Differ from Standard Reuse M ethods................................................11
2.2 Software Architecture.....................................................................................................12
2.3 Summary.......................................................................................................................... 15

3.0 Making Software Development Process Models Engineering Based........................... 16

3.1 History o f  the Evolution o f Creational Software Process Models............................ 16
3.2 Evolving to Engineering Based Process M odels.........................................................22
3.3 Evolution o f  the Waterfall Model into an Engineering Based Process....................24

3.3.1 System Feasibility.................................................................................................... 24
3.3.2 Software Plans, System Domain Boundary Identification, and Requirements 
Development....................................................................................................................... 24
3.3.3 Select System Architecture.....................................................................................25
3.3.4 Adapt Standard Components and Unit T est.........................................................25
3.3.5 Integration............................................................................................................... 26
3.3.6 Implementation and System Test...........................................................................27

3.4 Evolution o f  the Spiral Model into an Engineering Based Process......................... 27
3 .5 Evolution o f  Information Engineering into an Engineering Based Process............. 30
3.6 Summary o f  Software Development Process Evolution........................................... 33

4.0 Software Architectural Development and Patterns..........................................................35
4.1 Implementing Architectural Development Through Patterns....................................35

4.1.1 Architectural Patterns............................................................................................. 36
4.1.2 Design Patterns....................................................................................................... 37
4.1.3 Idiom Patterns..........................................................................................................38

4.2 General System Construction Based on Patterns.........................................................38
4.3 Pattern Format and Content.......................................................................................... 39

4.3.1 Context....................................................................................................................41
4.3.2 Structure..................................................................................................................41
4.3.3 Dynamics................................................................................................................ 42
4.3.4 Implementation...................................................................................................... 42

4.4 Required Additions to the Pattern Template............................................................... 42
4.4.1 Companion Patterns................................................................................................43
4.4.2 Preconditions...........................................................................................................43

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4.4.3 Constraints................................................................................................................ 43
4.4.4 Pattern T ype.............................................................................................................44

4.5 A Pattern Template that Supports Architectural Development.................................44
5.0 Making Software Development Methodologies Engineering Based............................ 47

5.1 Evolving Fusion with Software Architectural Development..................................... 48
5.1.1 General Description o f Fusion............................................................................... 48

5.1.1.1 Analysis..............................................................................................................48
5.1.1.2 Design................................................................................................................ 49
5.1.1.3 Implementation................................................................................................. 49

5.1.2 Fusion and the Software Development Process...................................................50
5.1.3 Software Architectural Development Based Fusion........................................... 52
5.1.4 An Example o f Engineering Based Fusion...........................................................53
5.1.5 Review of Engineering Based Fusion....................................................................65

5.2 Evolving Rapid Application Development with Software Architectural 
Development........................................................................................................................... 66

5.2.1 Basic Need for Evolution to an Engineering Based Paradigm.......................... 67
5.2.3 Modifications to System Planning and Design Phase.........................................67
5.2.4 Modification o f the Construction and Cutover Phase........................................69
5.2.5 An Example o f Engineering Based RAD............................................................. 70
5.2.6 Review o f Engineering Based RAD...................................................................... 72

5.3 Summary o f Methodology Evolution............................................................................73

6.0 Conclusion.............................................................................................................................74

6.1 Existence o f Scientific Basis to Support the Paradigm Shift..................................... 74
6.2 Related Work....................................................................................................................76
6.3 Summary.......................................................................................................................... 76
6.4 Future W ork.....................................................................................................................77

7.0 References.............................................................................................................................79

Appendix A: Requirements for Example Problem...................................................................83

Appendix B: Example Architectural Pattern............................................................................85

Appendix C: The RAD Life Cycle.............................................................................................90

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

List of Tables

Table 1: Major Process Models Mapped to Creational Meta M odel................................. 22

Table 2: Major Process Models Adapted for Architectural Development..........................23

Table 3: Comparison o f Pattern Categorizations.................................................................. 37

Table 4: Pattern Description Template...................................................................................40

Table 5: Pattern Template Supporting Software Architectural Development...................44

t
I

i
I

t
[i

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

List of Figures

Figure 1: Waterfall Model......................................................................................................... 17

Figure 2: Spiral Model................................................................................................................19

Figure 3: Information Engineering........................................................................................... 20

Figure 4: Evolution of Process Models Addressing Specific Issues....................................22

Figure 5: Modified Spiral M odel..............................................................................................28

Figure 6: General Software Construction Problem ...............................................................38

Figure 7: Pattern Use in System Construction.......................................................................39

Figure 8: Pattern Support for Software Architectural Development................................... 46

Figure 9: Fusion Model Relationships.....................................................................................50

i Figure 10:
I

|  Figure 11:
f
[ Figure 12:
t
J Figure 13:

Figure 14: 

Figure 15:

| Figure 16:

Process for Developing Software Products......................................................... 51

Sale and Transaction Generic System Object Model.......................................... 56

Standard Classes Adapted for Unique System....................................................58

Scenario for Payment..............................................................................................60

Life Cycle for Payment as a Regular Expression.................................................61

Data Model for Sale and Transaction Architecture............................................ 71

Process Decomposition Model for Payment....................................................... 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

1.0 Introduction

1.1 Background

In 1975, Ross, Goodenough, and Irvine published a paper that captured the important 

underlying issues with respect to what at that time was the new concept o f software 

engineering [RGI75]. Their description o f software engineering was in terms of a process 

implemented upon a defined set o f principles to achieve a specific set of goals. The 

motivation for their work was the realization that the notion of software engineering was 

ill defined except for the fact that software engineering implies the disciplined and skillful 

use o f suitable software development tools and methods, as well as a sound understanding 

of certain basic principles.

The process described in Ross et. al., [RGI75] is composed o f five steps. These steps are:

• purpose - define the requirements for a system

• concept - derive the architecture o f a software system to satisfy the

The implementation o f  this process is governed by the application o f seven guiding 

principles. These principles are:

• usage

• mechanism

• notation

requirements

- implement the software system (code/debug/tune)

- define the means a user will employ to invoke the system 

capabilities

- describe how the software system is controlled

• hiding

• localization

• modularity

• abstraction

- how to structure the software

- identify essential properties common to different entities

- make inessential information inaccessible

uniformity

- methods for bringing related things together

- ensure consistency

with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

• completeness - ensure nothing is left out

• confirmability - information needed to verify correctness has been explicitly

stated

This disciplined process founded on these principles is used to develop software systems 

that satisfy the following set o f goals:

• modifiability - control can be exercised over subsequent changes to the system

such that these changes do not degrade the system over time

• efficiency - the execution o f system functionality occurs within required time

constraints

• reliability - system implementation must prevent system failure as well as

permit system recovery from unexpected failure

• understandability - the system must be understandable from the view point of all

parties involved such as the user, developer, and manager.

k A review of this landmark paper is important because these concepts o f  software
f
; engineering have had a major impact on how software engineering is perceived and

\ defined.

Over the years there have been additions to the set of principles and goals as well as 

refinement to the process. However, the basic notion o f software engineering being a

disciplined process founded on a set of principles to achieve a set o f goals has remained 

j one of its underlying ideas. One cannot deny that this view of software engineering brings

' invaluable insight, but it has not led to a true software engineering discipline.
Iit
: In the seventies, it was important to instill into the software industry that software

development, particularly for large system development, cannot be successfully conducted 

without the exercise o f  a defined disciplined approach. This was a central theme in Ross 

et. al., [RGI75] and has continued to be the basis for work that strives to define and 

establish software engineering. Focus on this paradigm o f software engineering has indeed 

brought the software industry to the general acceptance o f the notion that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

3

development o f quality software is strongly influenced, if not directly dependent, upon 

having a well defined process that is followed in a disciplined fashion. What this paradigm 

has failed to do is bring the industry to a full realization of software development as a true 

engineering discipline. To accomplish this will require a shift in our basic model o f what 

software engineering is and an extension o f the established foundation o f disciplined 

software development processes with the adoption o f new technologies and approaches to 

software development.

In Pfleeger, [Pfleeger91] the role o f a software engineer is contrasted to the role o f a 

computer scientist similar to the way a chemical engineer is contrasted to a chemist. The 

chemist is concerned with the investigation of chemical structures, interactions, and the 

theory behind their behavior. The chemical engineer is concerned with the application of 

these findings to solutions for a variety o f problems. In short, chemistry as viewed by the 

chemist is the object o f study where chemistry as viewed by the chemical engineer is a tool 

to be used to address a general problem.
♦

I In similar fashion, a software engineer is interested in using the findings of a computer

[ scientist with regard to the structures, interactions, and theory o f software as tools to

|  solve a variety o f problems requiring software systems as a solution. This analogy holds

I true regardless of the engineering discipline. There is always a scientific discipline focused

at expanding the underlying theory and knowledge of the basic materials used by an 

engineering discipline as tools and resources to solve a specific problem.
i

I The work o f  an engineer and scientist can be further contrasted in the following way. The
t
| scientist’s primary goal is one o f discovery. The engineer’s primary goal is the
i
i specification and design of solutions to problems which are often repetitive in nature and

the management o f the construction of those solutions based upon the design. An 

engineer is concerned with the repetitive use o f scientific discovery to create useful 

products as solutions to a recurring set o f problems for a defined user community.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4

It is the emphasis on repetitive use of technology and recurring problem sets that is 

missing from the current software engineering paradigm. This omission has hindered the 

growth o f the industry into a true engineering discipline.

Software development has remained fundamentally a process o f creation and discovery. 

Granted, the progress in adopting software engineering practice has moved development 

activity away from ad hoc development towards more rigor and discipline but these 

disciplined processes only formalize the craftsmanship used to create new products. Little 

is found in these processes that encourage the use of scientific discovery as tools or the 

systematic reuse o f properties or resources in the construction o f software systems.

What is needed then to move software development towards a true engineering discipline 

is to first expand the current model of software engineering to emphasize the repetitive 

problem solving aspects o f engineering and then evolve current processes and methods to 

this expanded paradigm o f software engineering.

f
| 1.2 A New Paradigm for Software Engineering

| A major theme that has emerged within the software community is that o f repeatability or

i recurrence. Repeatability is the foundation of software process improvement as

recognized in the levels of the capability maturity model [PCCW93], Repeating designs 

are the basis for recognizing patterns in software development and documenting solutions 

I to commonly occurring problems in software systems [BMRSS96], Similarly, reuse o f

| software artifacts is also often cited as the basis for improving software development

f productivity and quality [CN96],
r

These observations lead to the conclusion that the primary concern of software 

development is not in creative activity or new discovery but in routine development o f 

solutions that are related and support repetitive use o f processes and software artifacts. 

This observation is important because it substantiates the inclusion of routine development 

activity as part of the fundamental definition o f software engineering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

5

The vast majority o f engineering projects involve the routine design o f  solutions to 

recurring problems. Occasionally, the solution will require some degree o f innovation to 

address a need unique to a specific instance o f a common problem. Even rarer is the need 

to create or discover a new solution. This description bears little resemblance to the way 

software development is currently practiced in most organizations. M ost current 

methodologies in use today to develop software can be described by the following model.

1. assimilate the application domain

2. abstract custom models for this domain

3. craft custom components [Best95]

The methodology may be very disciplined but it is still assumed that the primary activity is 

one o f  discovery, creation, and craftsmanship. If  the development process is based on an 

engineering paradigm, then the methodology would be described by the following model.

1. Match the domain to standard architectural models

2. adapt the standard components associated with these models to meet domain 

requirements [Best95],

This second model emphasizes the use o f  existing experience and knowledge to derive 

solutions to common sets o f problems. It suggests that software development is a routine 

activity that can build upon the solutions provided to previous problems. A reevaluation 

can now be made o f existing software engineering definitions based on the notion that true 

engineering involves the routine development o f solutions to a frequently recurring set o f 

problems.

Pfleeger defines software engineering as a strategy for producing quality software 

[Pfleeger91], Sommerville describes software engineering as being concerned with 

theories, methods, and tools to produce software products in a cost-effective way 

[Sommerville96], We can combine these two descriptions o f software engineering with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

6

the description in Ross et. al, [RGI75] to develop a comprehensive definition of the 

current perception:

“Software engineering is the disciplined and skillful use o f  software 

development tools and methods to implement a strategy characterized by the 

notions o f modularity, abstraction, localization, hiding, uniformity, 

completeness, confirmability, to produce quality products which are 

understandable, reliable, efficient, and modifiable, in a cost-effective 

manner.”

Since the goals are qualifiers for quality and the principles characterize the strategy, we 

can shorten the definition to read as follows:

“Software engineering is the disciplined and skillful use o f software 

development tools and methods to implement a strategy to produce quality 

software products in a cost-effective manner.”

| It is interesting to note the ease with which these three descriptions can be blended

1 considering that they span twenty years. This is more evidence o f how closely the

software community has kept with the original notions o f software engineering. These
\

statements as definitions are more statements o f desired results than definitions of 

engineering activity. We have already shown that the primary activity o f engineering is to

provide solutions to recurring problems. Furthermore, we have established that the

I discovery o f software properties and underlying theories lie in the realm o f computer
i
1 science. As such, a discussion as to whether such a set o f properties exists is outside the

| scope o f this thesis. What is o f importance is that the capture o f  this knowledge is

accomplished in ways that support its repeated use in multiple products.

Our new definition of software engineering is as follows:

“Software engineering is the disciplined and skillful use of software 

development tools and methods applied to recurring problems to 

produce useful products in a cost-effective manner.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

7

This definition is designed to emphasize two important points that transform the initial 

definition into one closer to true engineering. First, the essence o f engineering is routine 

development o f products for repeating problem domains. Second, the resultant product is 

useful to the user.

Engineering by its nature is routine. This does not imply that engineering projects are 

always simple or straightforward. Routine implies that there is a marked lack of invention. 

Rather, the project is one o f applying proven practice to a specific problem. The lack of 

this one property in software development has contributed more to inhibiting the growth 

o f software development into a true engineering discipline that any other issue. The 

processes and methods in use today are still based on a creational paradigm.

The second area emphasized in this definition is that the products produced by an 

engineering activity must be useful. A current trend in all industries is to focus on the 

notion of quality for products. While this is a very important concept and the adoption of 

> total quality management principles has had a major positive impact on industry at large, it

| is often difficult to fully understand what quality means with respect to a software

' product. There is also a tendency to confuse quality with notions o f products that are best

[ o f breed, provide the most options, or are superior to all other products. These are limitedCt
? notions of quality.

Being focused on usefulness still embodies the concept of quality while maintaining the 

r proper perspective of the goal o f engineering. A  product that is engineered can usually be
t
f characterized as one that is a practical solution that fits the needs o f the user. For

[ software, the definition o f “user” can become complicated. Users o f a software product

! are the individual who uses the system in support o f work activity, the maintainer of the

software system, and management responsible for overseeing the system’s use and 

upkeep. With this in mind, one can see how quality and usefulness can be synonyms. If  we 

use the four goals from Ross et. al. [RGI75] as a description o f  quality, we can see how 

these same goals describe the usefulness o f a system. Understandability and modifiability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

8

support the system maintainer while reliability and efficiency support the end user. All 

four goals indirectly support management responsibility.

Our paradigm for software engineering must then be more than a principled disciplined 

process directed toward a set o f  goals. The paradigm must be one that supports the 

application of an established base o f knowledge for the routine development o f useful 

software products. We investigate these ideas further in this thesis.

Chapter 2 introduces and describes software architectural development as the basis for 

evolving software processes and methodologies to an engineering based paradigm. 

Chapter 3 presents a brief history o f the evolution o f  software process models. We then 

show how process models can be transformed into models based on an engineering 

paradigm. Chapter 4 describes a general approach for the implementation of software 

architectural development using software patterns. Chapter 5 describes how the general 

approach in chapter 4 is applied to the transformation o f methodologies to an engineering 

based paradigm. Chapter 6 revisits the notion o f software engineering with respect to the 

existence of scientific support and summarizes the findings of this research.

f
tf
1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

2.0 Software Architectural Development

Having established a definition for software engineering and a paradigm that reflects a 

truer nature for an engineering discipline, the next question to ask is what changes are 

needed in the supporting software technology? Technology is used here in its most 

general definition to include tools, processes, and methods that are used in the 

development o f  software systems. The key to understanding the needed changes in 

technology is to understand the differences between the two development models 

presented by Best [Best95].

The first model is one that covers what is called process-based, non-architectural 

approaches. This model is referred to as process-based since it is a meta model for 

existing software development processes such as the waterfall model. It is considered 

non-architectural due to the fact that the model does not require the use of architecture to 

guide development activity. It is, however, quite probable that an architecture, formal or 

informal, will be created at some point in the software development process. We will refer 

to this model as the creational model to emphasize the fact that the primary work activity 

is the creation o f new software artifacts. This model describes software development in 

three phases.

1. Assimilate the application domain.

This phase would establish a thorough comprehension o f the domain for which a 

system would be built. It implies that there is incomplete knowledge about the domain 

and models or artifacts that might exist must be enhanced before one could begin to 

match domain needs to a developing system.

2. Abstract custom models for this domain.

This phase implies that any system framework or design must be created specifically 

for the analyzed domain.

9

with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

10

3. Craft custom components.

Here again, all components1 to be used in the software system must be created 

specifically for this project. Although there may be an attempt to reuse components 

from other systems, the methods this model describes provides little to no support for 

this activity. Additionally, current approaches to reuse have had little real world 

success. Current approaches to reuse have been compared to archaeological digs 

which only occasionally reveal hidden treasures.

Methods that can be described by this model provide little or no support for engineering 

activity. The emphasis is one of discovery and creation. Routine development is hindered 

because there is no incentive to build upon past experiences or use artifacts from similar 

systems.

The second model presented for software development methods is called architectural 

development. This model is based on the assumption that software architectures can be 

\ captured in a manner that allows them to be recognized as a potential solution to a stated

[ problem in a given domain. It is this model o f development methods that provides the

| basis for engineering software systems. This model describes the development process in

I two phases.

r 1. Match the domain to standard architectural models.

j| Generic architectural models would exist that would allow analyst to quickly match

f specific domains and domain terminology to a family of applications.
t
1i 2. Adapt the standard components associated with these models to meet domain

requirements.

1 Components in this thesis refer to any item used in software development, i.e. design models, code, test 
cases, etc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

11

Associated with the architectural models would be components used to implement the 

model. These components would be adapted to support the unique specifications of 

the domain.

The result would be a customized solution based on a standard architecture derived from a 

standard library of components. The ability to capture standard architectural models 

supports the notion of routine development. It eliminates the creational approach and 

replaces it with one that relies on handbooks o f standard practice. We will adopt software 

architectural development as the name for this approach for software development.

2.1 How Does this Differ from Standard Reuse Methods

The difference between architectural development and reuse as practiced today is that 

architectural development bases the selection o f components on established system 

architectures that map to domains. Reuse as practiced today considers each component 

individually and attempts to discover elements within the component that support the 

creation of a new system. The components do not support an established architecture. 

The process o f identifying reuse components is not tied to architectural models as well. 

Identification relies upon component descriptions and semantic or structural bindings with 

the developing system.

Software architectural development on the other hand provides support for the systematic 

reuse o f software components. Issues o f  component capability, interface, and control are 

already addressed through the architectural model for the system.

A major difference between standard reuse and architectural development is the lack of 

solid methodology and process support for standard reuse. Adoption o f an architectural 

development based methodology makes reuse o f components part of the standard method 

o f system development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

12

2.2 Software Architecture

The proper application o f software architectural development requires an understanding of 

what software architecture is. The notion o f architecture in software is relatively new and 

not yet fully matured. Therefore, it is necessary to explain what we mean by software 

architecture and how the concept applies to the application of software architectural 

development.

Shaw and Garlan state that software architecture involves the description o f elements from 

which systems are built, interactions among those elements, patterns that guide their 

composition, and constraints on these patterns [SG96], The focus o f software 

architecture is on reasoning about the structural issues o f  a system [CN96]. These 

structural issues include:

• composition o f components

• global control structures

• protocols for communication

• composition o f design elements

• physical distribution

• scaling and performance

• dimensions o f evolution

• selection among design alternatives [SG96],

A software architecture then is a defined software structure that captures high level design 

definitions in sufficient detail that supports analysis o f its usefulness, evolution into hybrid 

designs, and can serve as the basis for system development.

The natural trend in the combined work on software architecture seems to be moving 

towards a paradigm o f software development based on principles of architecture [CN96], 

This observed trend is the basis of this thesis. The goal o f  identifying a software 

architecture is to capture the structural commonality among members of a program family 

so that high-level decisions found in each member of the family need not be re-invented,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

13

re-validated, and re-described. This aspect o f architecture is the foundation o f software 

architectural development. The nature o f architecture serves as the link between a 

problem statement in a given domain and the selection of a solution proven to be viable 

through use in previous similar applications.

Software architecture can be described from at least three perspectives, the functional 

partitioning o f its domain o f interest, its structure, and the allocation o f  domain function to 

that structure [KBAW94]. The description of system functionality links the architecture 

to specific domain applications, the description o f structure enables the architecture to be 

used as the basis for system development, and the allocation o f domain function to 

structure serves as the bridge between the domain based problem statement and the 

programming based solution.

Having system structures described in a manner that captures the commonalties within a 

program family and having a clear link between that structure to stated domain problems 

support the creation o f  processes and methods that address the repetitive nature of 

software development which is an essential aspect o f establishing a software engineering 

discipline. It is this aspect o f architecture that is expanded on in this thesis. We hope to 

i show how basing software development on the use of architectures will allow us to evolve

I the current traditional creational based methods to methods that directly address the
r

repetitive nature o f  software development thereby moving us towards a more correct 

concept o f software engineering.
3

I
| At present there is little consensus as to what detail should be included in an architecture,
f

how it should be represented, and the terms used to define and describe architecture 

[CN96], Research addressing these issues with architecture can be roughly divided into 

four categories:

•  architectural description languages - the development o f languages which provide 

better ways to document and communicate architectures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

14

• codification of architectural expertise - the cataloging and rationalization for the 

variety o f architectural principles and patterns developed through software practice

• frameworks for specific domains - the development o f architectural frameworks for a 

specific class o f software.

•  formal underpinnings for architecture - the development of formalisms for reasoning 

about architectures [SG96],

The actual detail needed for a full definition o f architecture is a critical concern but not 

part of the main focus o f  this thesis. Our concern is for the establishment of a technique 

that can use an architectural definition as the basis for software development. We will 

show an approach that can accommodate any form of architectural representation and 

assume that the proper level o f detail is available in the architectural definition.

At the very least however, we would expect a software architecture to provide:

i
I •  identification o f all major system components

I •  detailed information about the functions provided by components and the context of
i
[ their use
i

• detailed information about the structure and dynamics of each component

I •  identification of all connections and relationships of the major components
i
I • detailed information about component connections that fully describe the structure and

[ dynamics component interconnections

As one can see, the fiili treatment o f software architecture is a major work in itself and 

well beyond the scope o f  this thesis. Our focus is on the use of software architecture in 

the evolution of processes and methods in common use today towards what we feel to be 

a more complete definition o f software engineering. As such we will not elaborate on the 

various issues of architectural detail and representation. Examples o f the use of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

15

architecture within this thesis will be simple and usually only partial representations of 

architecture. The intent is to demonstrate a technique that can be used to incorporate the 

use o f software architectures within existing processes and methods to adapt them for 

better support of repetitive engineering activity.

2.3 Summary

Two meta process models have been presented that define the family o f software 

development process models in current use today and a proposed family of software 

development process models. Current software development models fall in the family o f 

creational software process models. Since they are creational based processes, they do 

not adequately provide the support necessary for evolution towards software engineering.

The second defined meta model is the software architectural development model. This 

family o f software development models promotes the establishment o f defined system 

architectures which serve as a basis for software development.

Chapter 3 will address software architectural development models in further detail. A 

brief history o f the evolution of modem day software development processes is presented
f

i to show how advances in software development processes are not moving towards

software engineering. Then representative process models will be mapped first to the 

creational meta model. Next we will show how these models may be modified to provide 

support for software architectural development thereby adopting what we believe to be a 

£ more accurate definition of software engineering.
i
t
r
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

3.0 Making Software Development Process Models Engineering Based

3.1 History of the Evolution of Creational Software Process Models

Software process models determine the order o f  the stages involved in software 

development and establish the transition criteria for progressing from one stage to the next 

[Boehm88]. There has been a continual evolution o f process models which began as early 

as the late SO’s. The establishment of process models as well as their evolution has been 

driven by the increasing complexity of software systems. In fact, one could conclude that 

the root cause o f the “software crisis” is our inability to manage the impacts on software 

development due to the complexity of software systems.

Process models address two simple questions. These questions are:

\ 1. What shall we do next?
f
t
i

|  2. How long shall we continue to do it [Boehm88]?
i
i
I Although simply stated, answering these two questions is proving to be the key to
*

achieving control over software development and the continually increasing software 

complexity issue [Humphrey89],

( The earliest o f process models was the code-and-fix model. This model has two steps:
f
\

i 1. Write some code.
[

2. Fix the problems in the code.

It quickly became self evident that relying upon this model o f software development 

allowed systems to become unstructured and expensive to maintain. This led to the 

adoption o f the stagewise model [Benington56], This model defined a set of sequential 

stages for software development. These stages are:

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

17

1. operational plan

2. operational specifications

3. coding specifications

4. coding

5. parameter testing

6. assembly testing

7. shakedown

8. system evaluation

The waterfall model, figure 1, developed in 1970 was a refinement o f the stagewise model 

[Royce70]. It provided two primary enhancements to the stagewise model:

1. Recognition o f feedback loops between stages with guidelines to minimize rework 

involved in feedback across many stages.

2. The incorporation o f prototyping in the software life cycle that ran parallel with 

requirements analysis and design.

Figure I: Waterfall Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

18

As systems became larger and more complex, it became impossible to fully define system 

requirements and follow a straight sequential process model. The prevailing requirement 

for system flexibility and the inability to fully anticipate all system requirements up front 

led initially to variations on the waterfall model by introducing the notion o f incremental 

development. The waterfall model still served as the basic process model but the system is 

developed in smaller increments and integrated over time.

The evolutionary development model is another process model developed in response to 

the perceived rigidity of the waterfall model [MJ82]. This model allows the system to 

evolve over time and has relied heavily upon fourth-generation languages for its 

implementation. This model supplies rapid initial operational capability and provides a 

realistic operational basis for determining subsequent product improvements [Boehm88]. 

There is a significant risk with this model however o f development slipping back into the 

old code-and-fix model.

I With advances in automated code generation technology came the transform model of
I

I software development [BCG83], This model relies on formal specification o f the system

that can be transformed into the software product.
F\
1 The spiral model, figure 2, is another refinement o f the waterfall model [Boehm88]. The

primary focus o f this model is the management o f the risk associated with software 

development. This model cycles through the four primary activities of determining

; objectives, evaluating alternatives, development, and planning. Risk assessment is

I incorporated in the evaluation activity for each iteration o f software development activity.

f
r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

19

partition ■ » /  _  _ S im u la tions , m o d a is , be n ch m a rks

C o d a .

. In te g ra tio n  I 
I and ta s l 1

tost

P lan  n e x t phases

Figure 2: Spiral Model

Up to this point we have shown the evolution of general process models. One additional 

model should be noted that was developed specifically for business system development. 

This model was developed by James Martin in a time frame roughly parallel to the spiral 

model. The model is called Information Engineering, figure 3 [Martin90]. This model is 

based on the realization that individual S3’Stems within a single enterprise are often highly 

integrated with respect to the enterprise business processes. Information Engineering 

expands development activity from single system based development to  an entire 

enterprise in a top down fashion to help assure proper integration o f individual business 

systems. Information Engineering will be described more fully in section 3.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

20

Infori

|
| Figure 3: Information Engineering

| Figure 4 places the evolution o f  software process models in perspective. We can see that

: each evolutionary step was intended to address a specific software development issue

driven by ever increasing system complexity. The basic paradigm of creational 

development has remained constant as each process model evolved from its predecessor.t
| Each model endeavors to create a system specification, system design, and then an

| implemented system. The basic premise for the spiral model, for example, is that several

\ iterations o f analysis and design supported by throw away prototyping must occur before

there is enough comprehension o f the requirements to actually build the system. We can 

also see that although this evolution has brought considerable ability to control system 

development, the price has been one o f efficiency. This is evidenced in the emergence of 

the divergent path o f evolutionary development. It is not until the control o f system 

complexity brought focus to domain identification that significant attention was given to 

the notion o f providing for routine treatment o f repetitive systems in process models. We

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

21

see this shift best demonstrated in the emergence o f Information Engineering and the 

concept of Domain Engineering.

Information engineering shows the significant role domain and domain understanding 

plays in software development. The top two activities shown in figure 3, which are the 

ISP and BAA, have as their purpose the identification o f the overall domain o f the 

enterprise as well as specific business domains the comprise the enterprise. What is not 

present in Information Engineering is acknowledgment o f the fact that most domains can 

be described with generic models [PS94], This suggests that families of software 

architectures could be constructed to address domains and that these architectures could 

be used as the basis for software system development with the bulk of the development 

activity devoted to adapting general components to  specific needs of a unique instance of 

a domain. The existence of families o f systems and the ability to develop specific solutions 

from general components is the essence of engineering and a fundamental theme in this 

thesis.
i
I
j: The primary intent o f domain engineering is the development, capture, and evolution of

| knowledge and assets for a family of systems [WE96], Assets that are developed meet

[ common requirements across the domain and are tailorable for specific application needs.
r
; We can clearly see that in domain engineering we are adopting a major shift in the

fundamental paradigm for system development that takes us away from creational based 

development to one based on the reuse of a family of assets. Software architectural 

f  development is closely related to domain engineering. Domain engineering could serve as

| the technique used for the initial identification o f  architectures and software architectural

I development used as the back end technique for system development.

We conclude from this analysis of the evolution o f  process models that the evolutionary 

development o f software processes is not leading toward an engineering discipline. The 

move toward engineering will require a revolutionary shift driven by domain engineering 

and software architectural development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

22

Code 
& Fix

Time

• S tageW ise W aterfall

—  Evolution

■ Transform

Iterative - Spiral

Domain
Engineering

Information
Engineering

Software
Architectural
Developm ent

U nstructured
D evelopm ent

C ost Control Efficiency Risk Domain
Identification

Engineering

Figure 4: Evolution of Process Models Addressing Specific Issues

3.2 Evolving to Engineering Based Process Models

Table 1 maps the three major process models in use today to the general creational 

process. As has been shown, each basic process structure was created in response to 

specific problems encountered in the development of large complex systems and it is 

j desirable to maintain those features o f the process model. They are not, however,
I

f evolving towards an engineering paradigm based on the fundamental concept o f routine

I system development.

Creational Meta 
Model

Waterfall Model Spiral Model Information Engineering

Assimilate Domain • System 
feasibility

• SW plans and 
requirements

•  Risk analysis
•  Concept of operation
• Simulations
• SW requirements
•  Requirements 

validation
•  Operational prototype

•  Information Strategy 
Planning (ISP)

• Business Area 
Analysis (BAA)

Create Custom 
Models

•  Product design
•  Detail design

•  SW product design
•  Design validation & 

verification
•  Detail design

•  System Planning & 
Design

Create Custom 
Components

• Code
• Integration
• Implementation

•  Code
•  Unit test
•  Integration & test
•  Acceptance tests
•  Implementation

•  Construction & 
Cutover

Table 1: Major Process Models Mapped to Creational Meta Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

23

What is required to move these models toward an engineering based paradigm is the 

removal o f segments o f  the process model that rely on discovery and creation and replace 

it with process activity that supports routine development based on defined system 

architectures and standard components

Table 2 summarizes the changes that must be made to the stages in each respective 

process model in order to support architectural development. Stages that involve the 

creation o f design or code are replaced by stages that identify and select standard 

architectures and modify the underlying standard components that are used to implement 

the architecture.

Requirements must still be established for the system. However, this process now 

becomes one of domain analysis with the intent o f bounding the system to be developed. 

This analysis flows into architecture identification which takes the place o f traditional 

preliminary or high level design. The evolution of each process model into an engineering 

based process is fully described in the following sections.

Architectural 
Development Meta 
Model

Waterfall Model Spiral Model Information
Engineering

Match domain to 
standard architectural 
models

• System feasibility
• Bound system 

within the domain 
and develop 
requirements

• Select appropriate 
architecture for 
system

• Risk analysis
• Bound system 

within the domain 
and develop 
requirements

• Requirements 
validation

• Select appropriate 
architecture for 
system

• Information 
Strategy Planning 
(ISP)

• Business Area 
Analysis (BAA)

• System Planning & 
Architecture 
selection

Adapt standard 
components

• Adapt components 
used to implement 
the architecture

• Integration
• Implementation

•  Adapt components 
used to implement 
the architecture

• Integration & test
• Acceptance tests
• Implementation

• Adapt components 
used to implement 
the architecture

• Cutover

Table 2: Major Process Models Adapted for Architectural Development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

2 4

3.3 Evolution of the Waterfall Model into an Engineering Based Process

The waterfall model provides a sequential process for the development o f a software 

system, figure 1. The strength o f this approach is the provision o f intermediate checks o f 

interim products as the system is being developed. These checks allow for greater control 

over system development by providing insight into the steps o f the process. Greater 

product quality is also supported at lower cost because the interim checks drive out errors 

introduced earlier in the development life cycle.

The goal o f evolution to an engineering based process model is to retain the basic 

characteristics o f the model while replacing the creational aspects o f the model with steps 

based on architectural development. The following describes how each step in the process 

model would be effected by an evolution to an engineering based paradigm.

3.3.1 System Feasibility

This step remains essentially unchanged. There will always be a need to assess the 

feasibility of any request for software development. The actual criteria used to determine 

feasibility will vary based on the domain o f  interest and the functional need required by the 

requester.

3.3.2 Software Plans, System Domain Boundary Identification, and 

Requirements Development

There is a significant shift in the activity associated with establishing system requirements. 

Since we are dealing with routine development, it is assumed that there exists an adequate 

description of the domain. The task o f requirements definition then is to capture the 

unique characteristics o f this particular request that will direct the selection o f a specific 

architecture and set of components. These requirements would be similar to requirements 

that guide the selection of a specific architecture for a bridge. The engineer will be 

concerned with defining the anticipated stress and load requirements and similar attributes 

that will guide the selection o f bridge structure and materials to be used. In similar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

25

fashion, a software engineer will be interested in capturing requirements related to 

response time, number of users, and data volume. The functionality o f the system is 

already known since this is a routine development problem.

The feed back loop to system feasibility still exists. The information gathered in this step 

will further refine the feasibility study by clearly identifying the system boundaries within 

the domain and establishing limits on system functionality thereby validating that the 

requirements address the issues identified in the feasibility study.

3.3.3 Select System Architecture

This step replaces Product Design and a large portion o f Detailed Design. Since the 

development is routine engineering activity it is assumed that a set o f proven architectures 

are available as potential solutions. This step will result in the selection o f a specific 

system architecture and an initial set o f standard components that best support the unique 

specifications and general functionality.

Custom designs do not need to be created. The engineer can rely upon approaches taken 

by other engineers that can be analyzed for their appropriateness based on principles 

supplied by computer science. Traditional design activity will be needed to design any 

modifications and additions needed to the standard set o f components that are necessary 

to support unique system specifications.

A feed back loop still exists to requirements definition. The chosen architecture and the 

required modifications to supporting components are still verified against the stated user 

need identified in the previous step.

3.3.4 Adapt Standard Components and Unit Test

This step replaces Code and Unit Test. The existence o f standard components would 

eliminate the need for custom development o f routine components. However, there still 

may be need for additions, new components, which would be created for a given system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

2 6

Hopefully, the number o f  additions will be small with the goal being to achieve zero new 

components. Since the components support an established architecture, interface code or 

glue would also exist. This means that the only coding required would be adjustments 

required for unique system requirements. The need for special code may be further 

reduced by creating configurable components. This would be accomplished by 

incorporating different features within a component that have been proven desirable for 

systems o f a specific type.

Adoption o f this approach to development does not eliminate the need for unit testing. 

However, there is a clear advantage in that a library o f trusted standard components is 

being used as the basis for development. This provides an opportunity to minimize the 

risk of component failure and support the establishment o f standard unit tests thereby 

reducing the often overlook risk of the faulty test procedures or test products. Unit test 

will become more focus on areas of modification.

There is an obvious and very large assumption associated with this step. It is assumed that
\
| a library o f standard, reusable, and configurable components exists that implement the
t

domain architecture and support the routine development activity.

3.3.5 Integration

The task o f system integration is simplified under this scheme. The architecture and 

standard components provide an integrated structure that is already proven. Integration 

can follow a known progression for piecing the system together. This aids in system 

planning and testing as well as actual component integration. Testing can focus on those 

areas where unique code changes were required and rely on trusted regression testing for 

general system testing.

Once again, it is assumed that standard architectures and standard components exist to 

support system construction. The fewer components that are available for reuse and an 

increase in custom modification will increase the effort required in this step.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

27

3.3.6 Implementation and System Test

This step remains essentially unchanged by the adoption o f an engineering paradigm. The 

system is still delivered and deployed like systems constructed under a creational 

paradigm. There should be, however, less risk in delivering an unreliable system to the 

user since a routine solution has been engineered. Not only is the system based on trusted 

software components, our set o f  standard components should also include established test 

plans, procedures, and test sets that have also been proven over time through routine use. 

This allows new tests to focus on modifications required to support unique system 

requirements.

3.4 Evolution of the Spiral Model into an Engineering Based Process

The spiral model is a risk driven approach to software development that can accommodate 

most other models o f software development as special cases [Boehm88], This model is 

 ̂ best applied when there exist multiple solutions or when significant risk to project success

[ exists. Once again, the goal o f evolving this model into an engineering based model can

| be achieved by replacing the creational aspects o f the model with architectural

f development based activity while leaving the general characteristics o f the model intact.
i|
; As shown in figure 2, it is the bottom right quadrant that will be most effected as the

model evolves to an engineering paradigm. It is also reasonable to assume that there will 

be fewer iterations in development due to the use o f established architectures and

| component sets.
[t
I The modifications recommended to the spiral model, like the recommendations for the
I

! waterfall model, are intended to adapt the model for routine system development. As

such, the same set o f assumptions stated for the waterfall model apply to this model. 

Specifically, there exists adequate domain definitions, a library o f  standard architectures, 

and a set o f standard, reusable, and configurable components and associated testing 

documents and test data sets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

28

Figure 5 depicts the changes that must occur for the spiral model to become engineering 

based. The risk driven aspects of the model remain the same. However, since our basis 

for development are sets o f well understood architectures and related components, some 

traditional sources o f risk are minimized or eliminated.

Progress
through
steps

Risk
analysis

Risk
analysis

Risk I 
analysis Prototype \  Prototype

jPrototypeCommitmentReview
Requirements plan 
Jjfe-cycle plan

/  Simulations, models, benchmarks I

/ /  r  "  - h  -  -  /
Design M od/Hcapons

Unit
test

Acceptance
test

Plan next phases

Develop, verify next-level product

v

[ Figure 5: Modified Spiral Model

Risk analysis varies in each spiral. The type of risk being assessed depends upon where 

development is within the execution o f the process. Initial risk analysis is concerned with 

system feasibility and the capture o f true requirements. Risks associated with software 

development activity become more central to the analysis activity as the process moves 

into later stages. Infusing architectural development based activity into this model 

enhances our ability to manage risk within a software development project. For risk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

29

analysis supporting front end activity, architectural development brings better definition of 

domains and structures in the form o f architectures that clarify issues o f system feasibility 

and requirements definition. The ability to judge between routine understood functionality 

and unique variants becomes easier thus making the areas of risk more manageable. Risk 

analysis in the latter stages o f development dealing with the actual product construction 

are supported by providing proven approaches to solution construction and past 

experience to support project costing and scheduling. Component functionality is also 

known going into the project so the risk of developing software that does not satisfy the 

requirements is reduced.

The original intent o f the first spiral in the model is to define the basic operation concepts 

o f a new system. It is implied that this operational concept model does not exist and must 

be created. An engineering based model would replace this first spiral with one that drew 

from an existing domain model to  scope and bound the specific area of the domain that 

will be the target o f a new system. This will allow the selection of a set o f architectures 

that further define the operational concepts and that will also serve as a basis for 

prototypes. These prototypes will be used to evaluate each architecture and select the 

best fit for implementation.

j> The second spiral then becomes one o f identifying the unique requirements that will be

included into the general system functionality provided by the base architecture. These 

requirements are added with the scoped domain model to support the final selection o f an 

architecture and standard component set to use as a basis for development.

The third spiral is the actual selection o f the base architecture and standard component set 

for system development. Validation and verification is performed against the selected 

architecture to assure that the requirements are satisfied.

The final spiral is similar to the steps in the waterfall model described in the previous 

section. There would be no operational prototype since the selected architecture with its 

set o f components provide a functional base system as a platform for system development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

30

3.5 Evolution of Information Engineering into an Engineering Based Process

James Martin describes the difference between software engineering and information 

engineering in the following way: “Software engineering applies structured techniques to 

one project. Information engineering applies structured techniques to the enterprise as a 

whole or to a large sector of the enterprise. The techniques of information engineering 

encompass those of software engineering in a modified form” [Martin90]. The definition 

of information engineering then is as follows: “the application o f an interlocking set o f 

formal techniques for the planning, analysis, design, and construction o f information 

system on an enterprise-wide basis or across a major sector o f the enterprise” [Martin91].

The emphasis in information engineering is the same as in the traditional view of software 

engineering which is the establishment o f formal techniques for the creation of new 

software systems. The major distinction between this process model and the two previous 

models is that this model acknowledges that systems are interconnected and provides a 

j formal means of identifying those connections and developing systems within the defined

|  framework.

! To summarize, information engineering is a process designed to control the enormous

; amount o f information that drives software development within an enterprise in a manner

| that permits the development o f individual software systems that are appropriately

interrelated. It is this fundamental concept that will be preserved as the model is evolved 

to support the engineering paradigm.
i

The process steps for information engineering are depicted using a pyramid, figure 3. The 

pyramid symbolizes the explosive increase o f information that must be managed as the 

? detail o f actual system implementation increases as development activity moves from

strategic planning for the enterprise to actual construction of the many systems that 

support the enterprise.

The information engineering process model is comprised o f six steps [Martin91]. These 

steps are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

31

1. Information Strategy Planning (ISP)

This step creates plans for information systems that are in line with the strategic 

business plans for the organization. The strategic plan produced in this step relates 

future technology to how it could affect the business, its products or services, or its 

goals and critical success factors. This plan is used to guide and prioritize 

expenditures on computing to maximize the effectiveness o f information systems’ 

contribution to corporate objectives.

2. Business Area Analysis (BAA)

The enterprise is subdivided into business areas. Business areas are identified in 

information strategy planning by creating an overview model o f the enterprise. 

Business areas usually are derived from identification of major enterprise activity 

defined by a business process model.

The objective o f business area analysis is to understand what processes and data are 

necessary to make the enterprise work and to determine how these processes and data 

interrelate.

3. Individual System Planning

The goal of the first two steps is to model the business activity of the enterprise and 

divide the enterprise in an appropriate fashion in order to facilitate system 

development. This step turns attention to the technology that will be used to 

implement the business model. Each business area may have one or more underlying 

information systems. This step plans the development o f these systems.

4. System Design

Each system is designed and developed as an independent project. Interconnection 

models are created and maintain to assure that systems are compatible and support the 

interrelated business activity between business areas. This step designs the data model 

for a specific system and the software components for that system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

5. Construction

This step is the coding and testing of a specific system.

6. Cutover

This step is the delivery o f a new system and its deployment within the enterprise.

All models and artifacts developed in the process are maintained in a common repository. 

The process emphasizes the need for relating all developing models and reusing common 

aspects between developing systems. Automated support for information engineering is 

also considered critical for success due to the large volume o f  information about the 

enterprise that must be managed.

We can consider evolving this software development process model into an engineering 

paradigm at two levels. We can modify the system planning, design, and construction step 

thereby evolving system development and we can also modify the ISP and BAA activity 

f thereby evolving the enterprise modeling activity.
t}
| The system development level o f this model is evolved by adopting architectural

| development as the basis for system design and construction. Unlike the waterfall and

spiral model, this model is tied very closely to a specific methodology for its 

implementation. Due to this fact, a detailed description o f how architectural development 

I is used to evolve this level of the model will be deferred to later sections that describe the

| evolution o f methodologies to an engineering based paradigm. The basics though are the

| same as previously discussed. Business software systems, like other software systems, can
I

be described in terms of specific architectures with associated standard component sets for 

implementation. The software development level of the information engineering process 

model is changed from one with a basic concern o f creating custom systems for an 

enterprise to one concerned with matching enterprise needs to established architectures.

Enterprise modeling can be performed based on an engineering paradigm as well. 

Enterprise modeling is a special case of domain analysis. Identifying classifications for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

domains that describe enterprises facilitates the establishment o f domain models in a 

similar fashion that architecture models can be established. Mapping enterprises to 

domain models would allow analysts to capture commonalties between enterprises and 

establish a foundation o f principles and knowledge for enterprise modeling.

Once again, our goal is to adapt the process model to support routine engineering activity. 

Therefore, our same set o f assumptions that were applied to the waterfall and spiral model 

will apply to information engineering.

3.6 Summary of Software Development Process Evolution

We have shown how the major software development process models have evolved from a 

common ancestry. Each model has been developed to address one or more specific issues 

that have confronted the development of systems of ever increasing size and complexity. 

We have also shown how the models can continue to evolve from creational based 

development to support the development o f software solutions in a routine engineering 

fashion. The underlying commonalties of these models suggest the existence of some 

important facts with regard to adopting a true engineering paradigm.

Regardless o f application domain, there exists fundamental commonality in the processes 

used to develop software systems. This is evident in the fact that all modem software 

development process models have derived from a common ancestor and by the fact that 

these process models can be described by a common meta model. This observation is 

important because it allows us to entertain the notion that there exists a fundamental set o f 

software engineering principles that are applicable across all domains. Software 

architectural development is one example o f a common software engineering principle.

The importance o f this observation is that it supports the notion that a predictable set of 

properties along with standard processes for their use can be established as the foundation 

for a software engineering discipline. This supports the feasibility o f defining standard 

architectures and related component sets as the foundation o f software development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

34

This observation also encourages a reevaluation o f the current trends to propagate 

specialized development process models and methodologies that are domain specific.

Each process model or methodology should be considered as a tool in a collection of tools 

that may be used as appropriate in any domain. The selection of tools is based on the 

appropriate application o f fundamental engineering principles.

We have now established how routine software engineering could be supported at the 

process model level. We now present a technique for adapting the methods used for 

actual implementation o f these process models.

f
fI

(

\
f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4.0 Software Architectural Development and Patterns

The basic strategy for evolving to routine construction o f recurring systems is based on 

the adoption o f software architectural development. It has already been shown through 

the previous review o f development processes how the use o f this technique effects 

analysis, design, and coding activities.

Methodologies provide definition o f  detailed activities that are used to actually perform 

analysis, design, and coding. New techniques will need to be introduced into these 

detailed activities in order to implement software architectural development. These 

techniques must support:

• representation o f common architectures

• mapping of requirements to architectures

• mapping of architectures to software components

• integration of components via architectural structure

• adaptation of standard components to unique system requirements

The inclusion o f software patterns as an integral part o f standard software methodologies 

provides a means o f including the necessary techniques to support architectural 

development. Patterns can provide a means o f capturing and relating architectures and 

components necessary for performing software architectural development activity.

4.1 Implementing Architectural Development Through Patterns

In chapter 2 we addressed the definition of a software architecture. It becomes self 

evident from the description in chapter 2 of software architecture that the proper definition 

of a system’s architecture takes more than a graphical depiction of connected components. 

Proper definition o f architectures will provide the information necessary to evaluate 

system requirements against potential solutions. Our goal is to identify a technique that

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

36

will capture software architecture definitions in a way that facilitate their use in routine 

software development. Software patterns can be used to capture architectures as well 

provide a basis for a system that enables architecture selection, mappings to related 

software component sets, and guidance for the adaptation o f  standard components to 

satisfy unique system requirements.

We will adopt as our general definition o f a pattern the definition offered by Riehle et. al. 

[RDZH96], “A pattern is the abstraction from a concrete form which keeps recurring in 

specific non-arbitrary contexts.” This general definition is preferred because it does not 

restrict patterns to be only associated with software design artifacts which has been the 

primary focus o f the use o f patterns. Both Riehle and Zullighnoven. [RZ96] and 

Buschmann et. al. [BMRSS96] present a case supporting the use o f patterns to represent 

more than software design with patterns. Table 3 outlines the two pattern classifications 

schemes presented in these two works.

; A review o f table 3 points out the close correlation between the two classifications.
S
| Riehle and Zullighoven focused on the language used to describe a pattern where

| Buschmann et. al. focus on the solution the pattern provides. It is appropriate, and

[ desirable, to describe architectural patterns with conceptual terminology, design patterns

| with design terminology, and idiom patterns with programming terminology. By

correlating these two classification schemes, we are provided with a guide for the selection 

o f proper pattern description from Riehle & Zullghoven for the appropriate solution

I category provided by Buschmann et. al.
if
j
‘ 4.1.1 Architectural Patterns

Software systems have always had architectures. However, only recently have there been 

efforts to identify these architectures and leverage their existence [PW92], Architectural 

patterns provide a means o f establishing templates for concrete software architectures that 

can be reused in successive developed systems. They express fundamental structural 

schemas and provide a set o f  predefined subsystems, specify their responsibilities, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

37

include rules and guidelines for organizing the relationships between them [BMRSS96]. 

The use of domain terminology in defining architectural patterns enhances the ability to 

map requirements to specific patterns which simplifies pattern selection.

Patterns of this type specify system-wide structural properties. The use of descriptive 

languages derived from terms and concepts of the domain relate architectural system 

structure to system requirements.

Riehle & Zullighoven Buschmann et. al.

Category Description Category Description

Conceptual A pattern whose form is 

described by means of the 

terms and concepts from 

an application domain.

Architectural A pattern expressing a 

fundamental structural 

organization schema for software 

systems. It provides a set of 

predefined subsystems, specifies 

their relationships, and includes 

rules and guidelines for 

organizing the relationships 

between them.

Design A pattern whose form is 

described by means of 

software design constructs.

Design A pattern that provides a scheme 

for refining the subsystems or 

components of a software system 

or the relationships between them.

Programming A pattern whose form is 

described by means of 

programming language 

constructs.

Idiom A low-level pattern specific to a 

programming language describing 

how to implement particular 

aspects of components or the 

relationships between them.

Table 3: Comparison of Pattern Categorizations

4.1.2 Design Patterns

Design patterns represent the middle tier o f software structure. These patterns are 

typically used to represent recurring software components. The components are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

38

represented independently o f language specific implementation. Descriptions of these 

patterns is in terms of software constructs as opposed to domain specific language.

4.1.3 Idiom Patterns

Idiom patterns represent low-level programming language specific implementation of 

components or the programming language specific implementation o f component 

relationships. These patterns capture useful recurring language structures.

4.2 General System Construction Based on Patterns

Figure 6 illustrates the general construction problem faced by software engineers. 

Comprehension on what is needed in a software system resides in a domain centric 

description. This description must be translated into software construction terms and 

models that support physical implementation o f the software system.

Domain Software PhysicalCentric Construction
Description Models Implementation

1
Figure 6: General Software Construction Problem

Figure 7 shows how patterns are used to bridge the gaps between domain centric 

j descriptions, software construction models, and physical implementation. System

' specifications are entirely within the domain description. Architectural patterns share the

| descriptive terminology with the domain and also contain software construction features
>

thus bridging between domain description and software design. The Design patterns fall 

totally within the software construction description. The Idiom patterns are used to bridge 

from the software construction models into a physical implementation o f the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

39

”) - < D -  ~ " 

Software Construction

-►[ idiom PatternsDesign PatternsArchitectural Patterns

Physical ImplementationDomain Description

System
Requirements Deagn

Physical System

Figure 7: Pattern Use in System Construction

4.3 Pattern Format and Content 

It is generally agreed that patterns contain:

•  Identity: a name that uniquely identifies a pattern and is used as a basis for

vocabulary.

•  Context: a situation giving rise to a problem.

• Problem: the recurring problem arising in that context.

•  Forces: any aspect of the problem that should be considered when solving it.

•  Solution: a proven resolution of the problem [BMRSS96] [Flower97],

Beyond this there is little agreement as to the exact form and content o f a pattern. A 

review o f published patterns will show that many pattern writers prefer a free form 

approach. Where free form may seem to provide greater expressiveness for pattern 

writing, there are major advantages to adopting a standard fix format for patterns. A fixed 

format for patterns would provide:

•  assurance that all pertinent information has been captured

• sharing o f patterns across a broader population

• support for automated identification and selection

• support for pattern comparison

• support for standardized engineering handbooks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

40

• support for formal definition and component proofs

The intent then for adopting a pattern template is to enable the pattern to be readily 

understood, applied, and implemented correctly. Table 4 is the template proposed by 

Bushmann et. al. [BMRSS96] and will be used as a starting point for defining a standard 

pattern template. A full description o f  the template in table 4 can be found in Bushmann 

et. al. [BMRSS96].

Field Description

Name The name and a short summary of the pattern.

Also Known As Other names for the pattern, if any are known.

Example A real-world example demonstrating the existence of the problem and the need for 

the pattern.

Context The situations in which the pattern may apply.

Problem The problem the pattern addresses, including a discussion of the associated forces.

Solution The fundamental solution principle underlying the pattern.

Structure A detailed specification of the structural aspects of the pattern.

Dynamics Typical scenarios describing the run-time behavior of the pattern.

Implementation Guidelines for implementing the pattern.

Example Resolved Discussion of any important aspects for resolving the example that are not yet 

covered in the Solution, Structure, Dynamics, and Implementation sections.

Variants A brief description of variants or specialization of a pattern.

Known Uses Examples of the use o f the pattern, taken from existing systems.

Consequences The benefits the pattern provides, and any potential liabilities.

See Also References to patterns that solve similar problems, and to patterns that help us 

refine the pattern we are describing.

Table 4: Pattern Description Template

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

41

The following describes a proposed variation on the template in table 4 to adapt it for 

better support for software architectural development. Fields not mentioned are intended 

to be used as described in Bushmann et. al. [BMRSS96],

It is important to remember that patterns are drawn from existing systems. Therefore, it is 

reasonable to assume that the details needed to develop a pattern are available or can be 

derived from existing system artifacts. It is also important to understand that 

architectural, design, and idiom patterns use the same pattern template for their 

representation.

4.3.1 Context

The context must clearly identify the domain the pattern was originally drawn from. This 

is only a minor extension of the current definition of context. It is important to identify 

the domain since this provides the basis for interpreting the language used to describe the 

\  pattern.

i lt is assumed that a domain analysis has been performed with respect to the system that 

the pattern is being drawn from. The importance of the information captured in this field 

I is the provision o f definitions o f terms and a reference point for interpretation o f the other

fields in the pattern.

I 4.3.2 Structure
f
f
| The structure section, along with the dynamics field which will be discussed next, must

 ̂ adopt a more formal representation than is generally used in pattern definitions. This is

necessary because these two fields are used jointly to capture the definition o f  

architectures in architectural patterns. For architectural patterns, we rely on the research 

in architecture definition to supply the appropriate representation o f architecture just as 

one relies on design modeling techniques in design patterns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4 2

4.3.3 Dynamics

Once again this section will need to evolve to a more formal definition o f the dynamic 

characteristics o f the components described by the pattern. This change has more to do 

with degrees o f accuracy than being necessary for currently using patterns. From an 

engineering perspective we would like to be able to determine exactly how a system and 

its component parts will function before construction. This will improve our ability to 

engineer reliable systems. Advances in scientific measurement o f software components 

will drive our ability to improve this field of the pattern definition [BMB96].

4.3.4 Implementation

This section will be expanded to include actual references to components in a standard 

library. Through this section, we establish links to components that can be used for actual 

system construction or provide an alternate method to define architectures and design or 

£ extend the definition capabilities of the structure and dynamics sections. Components may

f still be adapted but usually this would be to incorporate unique requirements for this

j particular system.
(

j

4.4 Required Additions to the Pattern Template

Four additional sections are needed to adapt a pattern template that is suitable to support 

| software architectural development. These sections are:

| •  Companion Patterns
t
| • Preconditions

• Constraints

•  Pattern Type

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

43

4.4.1 Companion Patterns

This section is a refinement o f  the “See Also” section. Patterns by their nature are used 

with other patterns to form complete systems. Therefore, it is desirable to capture 

concrete relations that exist between patterns. Pattern relations identified in this section 

are more concrete than those listed in the See Also section. The intent o f this section is to 

list patterns that should always be used in conjunction with a specific pattern unless the 

functionality provided by the underlying components associated with a pattern is not 

needed.

4.4.2 Preconditions

Preconditions for patterns is suggested by Beck [Beck94], This section further refines our 

understanding of the relationships between patterns. Often the sequence in which patterns 

are considered is critical to their appropriate use and implementation. This section 

identifies for a given pattern the conditions that must exist before the pattern can be 

properly applied. These preconditions are satisfied through the use o f  related patterns. 

Therefore, this field serves as a link between patterns and a means o f defining their 

sequence o f use.

4.4.3 Constraints

Constraints for patterns is another suggestion by Beck, [Beck94]. Conflicting forces 

acting on a solution to a problem can exist and are often mutually exclusive. Typical 

examples o f such constraints are choices between execution time and execution space, or 

development time and program complexity. A clear statement o f these constraints aids in 

pattern selection and the predetermination o f system cost, development time, and 

performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

44

4.4.4 Pattern Type

The same pattern template is used for all three types o f  patterns. Therefore, it is 

appropriate to tag each pattern with its pattern type (architectural, design, idiom). Having 

this information imbedded in the pattern definition is additional information that 

complements the companion patterns and preconditions sections.

4.5 A Pattern Template that Supports Architectural Development

Field Description

Name The name and a short summary of the pattern.

Pattern Type Architectural, Design, or Idiom

Also Known As Other names for the pattern, if any are known.

Example A real-world example demonstrating the existence of the problem and the need for 
the pattern.

Context The situations in which the pattern may apply that include identification of 
the domain.

Problem The problem the pattern addresses, including a discussion of the associated forces.

Solution The fundamental solution principle underlying the pattern.

Structure A detailed specification of the structural aspects of the pattern.

Dynam ics Concise description of the run-time behavior of the pattern.

Implementation References to standard components used to implement the pattern.

Example Resolved Discussion of any important aspects for resolving the example that are not yet 
covered in the Solution, Structure, Dynamics, and Implementation sections.

Variants A brief description o f variants or specialization of a pattern.

Known Uses Examples of the use of the pattern, taken form existing systems.

Consequences The benefits the pattern provides, and any potential liabilities.

Preconditions Other patterns that must be satisfied before this pattern may be used.

Companion
Patterns

Other patterns used in conjunction with this pattern.

See Also References to patterns that solve similar problems, and to patterns that help us 
refine the pattern we are describing.

Constraints Conflicting forces acting on the solution to the problem.

Table 5: Pattern Template Supporting Software Architectural Development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

45

Table 5 shows the altered template that captures the information necessary to support 

software architectural development. Items added to or changed in the original template 

are marked in bold. Items that are considered crucial for supporting software architectural 

development are italicized.

This template provides the information necessary to support software architectural 

development. We use the information captured by the pattern template to develop a 

software development system based upon software architectural development. Figure 8 

represents this development system. Domain needs are matched to an architecture 

through matching a system specification to the problem section in a set o f  related 

architectural patterns. This matching returns a proposed solution from the solution 

section o f the selected patterns. The companion patterns field in the architectural patterns 

relate associated architectural patterns and the design patterns used to move development 

towards implementation. The preconditions section in the related patterns provide the 

information needed for proper coupling of patterns.

The companion patterns section in the design patterns relate associated design patterns 

and idiom patterns. The preconditions field in the related patterns provide the coupling 

information at the design level. At all levels, the implementation field links each pattern to 

standard components used as the basis for system implementation.

The other sections in the patterns are used in pattern selection and in support during 

implementation activity. Specific use of these fields varies as to the level o f  abstraction 

represented by the pattern.

By leveraging the abstractions of patterns as described, we provide an interface between 

domain specifications and system development activity. The patterns also help manage 

system complexity in two ways. First they provide an abstract vocabulary through pattern 

names that make it easier for engineers to discuss architectures without referring to 

specific details. Second they focus attention on a specific set o f design and 

implementation options proven to be valid for a specific problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4 6

Architectural
Pattern

Architectural
Pattern

Standard Component 
R e p o s ito ry /^

Implementation'

Idiom PatternIdiom Pattern

Figure 8: Pattern Support for Software Architectural Development

Chapter 5 will demonstrate how this generic development system can be used to evolve 

methodologies in current use today toward support for routine software development 

activity. To illustrate the use o f this system and show that it is applicable to any domain, 

we will demonstrate how it can be blended with Fusion, a general object oriented 

methodology, and Rapid Application Development (RAD), a business systems 

development methodology based on information engineering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

5.0 Making Software Development Methodologies Engineering Based

Chapter 4 presented a general technique for software development based on software 

architectural development. It is not a complete nor specific methodology for software 

development. Many good methodologies have been developed over the years that address 

major issues in software development and support the established process models. Our 

goal is to evolve these methodologies using the technique described in chapter 4 so that 

they are engineering based as opposed to creational based methodologies. By doing so, 

we preserve the strengths provided by these methodologies while allowing software 

development to move towards a true engineering discipline. By evolving these 

methodologies in this fashion, we provide improved support for the routine development 

o f common software systems.

If software development process models need to evolve to an engineering based paradigm, 

then so do the methodologies used to implement them. Just as there are commonalties 

between software process models, so are there in methodologies. Each new methodology 

created builds upon the experience of past methodologies and is created to address one or 

more specific issues in software development.

Methodologies, like processes, are creational based. This is not surprising considering 

that the same forces influencing the development of process models influence 

methodologies as well. We must first understand the issues being addressed by a specific 

methodology and its support for the process models that it implements before evolving the 

methodology to an engineering based paradigm. The goal o f evolution activity is to 

preserve the basic characteristics o f the methodology while shifting the underlying 

paradigm.

There are too many methodologies in existence today to address each one. Two have 

been chosen that will serve to illustrate the paradigm shift. Fusion, and Rapid Application

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

48

Development (RAD) represent the major methodologies in use today and provide a cross 

section o f methodologies across the major application domains.

5.1 Evolving Fusion with Software Architectural Development

Many good object oriented based methodologies have been developed. We have chosen 

Fusion to represent this family of methodologies because it is itself a composite o f  several 

object oriented methodologies and it is defined by a very clear process.

Fusion was developed specifically to provide:

•  a systematic process supporting team management

• well defined notations to aid team communication

• coverage o f the entire software development life cycle [Coleman94],

5.1.1 General Description of Fusion

The Fusion method has combined features from several object oriented development 

methodologies into an integrated set o f models that provide a direct route from 

requirements to a programming-language implementation. Underlying the models is a 

data dictionary used to define all the entities in the various models.

Fusion is more than a set of models. It provides a well defined process for using the 

models to develop a software system. The Fusion process is divided into three phases:

• analysis

•  design

• implementation.

5.1.1.1 Analysis

The intended behavior o f the system is defined in the analysis phase. The models used in 

this phase describe:

•  classes o f  objects that exist in the system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

49

•  relationships between those classes

• operations that can be performed on the system

• allowable sequences o f operations.

The models used in this phase are the:

•  Object model: used to define the classes that exist in the domain

• System object model: used to define the system boundary within the domain

•  Interface model: used to define system operations and their sequence o f

execution.

5.1.1.2 Design

In this phase, decisions are made as to how system operations are to be implemented by 

the run-time behavior of interacting objects. Operations are attached to classes, object 

referencing is defined, and class inheritance is established. The design models show:

• how system operations are implemented by interacting objects

•  how classes refer one to another and how they are related by inheritance

• attributes of, and operations on, classes.

The models used in this phase are:

•  object interaction graphs: describe how objects interact at run-time

• visibility graphs: describe object communication paths

• class descriptions: specifies the class interface, data attributes, object

reference attributes, and method signatures

f •  inheritance graphs: describe class/subclass inheritance structures.
£

[

5.1.1.3 Implementation

This phase is where the design is turned into code in a particular programming language. 

Fusion provides guidance for this activity that provides direct support for using an object 

oriented programming language like C++ or Eiffel.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

50

Fusion provides the following guidelines:

• Inheritance, reference, and class attributes defined in the class descriptions are 

implemented in programming language classes.

• Object interactions defined in the object interaction graphs are encoded as methods 

belonging to a  selected class.

The permitted sequences o f operations defined in the interface model are recognized by 

state machines. Figure 9 [Coleman94] illustrates how the various models work together 

to develop a system.

ANALYSIS

DESIGN

IMPLEMENTATION

Visibility Graphs

Program

Requirements
Document

Class Descriptions

Inheritance Graphs

Object Interaction 
Graphs_____

Interface ModelObject Model

1
| Figure 9: Fusion Model Relationships
{

5.1.2 Fusion and the Software Development Process

It is stated in Coleman et. al. [Coleman94] that Fusion must fit into the wider context o f a 

software development process. The process in figure 10 [Coleman94] is an idealized 

model for software product production. The process follows the following stages:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

51

1. Establish a stable product definition and set o f requirements.

2. Define the major system hardware and software components.

3. Produce a plan for developing the system.

4. Develop each component identified in the system architecture.

5. Deliver the completed system to the customer.

Review
Risk

Stage 1: Define 
Product

Stage 3: Plan the 
Project

Stage 5: Deliver 
Product

Stage 2: Define 
System Architecture

Stage 4: Develop 
Architectural 
Components

Figure 10: Process for Developing Software Products

This process and its implementation is based on the waterfall model and is enacted by 

incrementally developing the different architectural components. Fusion is seen as a 

methodology for implementing stage 4 of this model.

Referring back to table 1, we see that Fusion fits under the “Create Custom Models” and 

“Create Custom Components” phases of the creational meta model. By evolving to an 

engineering based process, the work o f defining major software components found in 

stage two o f  the process model shown in figure 10 blend with activity in stage 4. This is 

due to the fact that custom models are no longer developed. Instead, established 

architectures will be identified as a final step in defining the system architecture which in 

turn will provide the initial system object models currently developed in the analysis phase

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

52

of Fusion. The following is the evolved definition o f the stages o f the process model in 

figure 10:

1. Establish a stable product definition and set of requirements.

2. Match the product definition to one or more standard architectural models

3. Produce a plan for developing the system.

4. Employ Fusion to refine the models associated with the standard architecture and 

adapt the associated standard components for this specific product.

5. Deliver the completed system to the customer.

5.1.3 Software Architectural Development Based Fusion

Standard architectures that are related to the product definitions developed in stage two 

are identified by referencing the context and problem sections o f the architectural patterns. 

Selection of an architecture provides the foundation for the system object model through 

structure fields of the patterns that define the architecture. The dynamics and precondition 

fields provide the foundation information for the interface model.

The companion patterns fields o f the architectural patterns are used to identify patterns 

that support the more detailed design o f the product. In turn, the design pattern’s 

structure and dynamics fields are used in conjunction with the established system object 

model and interface model to develop the object interaction graphs, visibility graphs, class 

descriptions, and inheritance graphs.

Once again the companion patterns in the design patterns are used to identify idiom 

patterns that will support final implementation. These patterns would primarily be used to 

aid in the coding of the class descriptions. The system life cycle developed in the analysis 

phase would still be the source o f system state definition and the basis for implementing 

object interaction control.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

53

5.1.4 An Example of Engineering Based Fusion

To illustrate the evolution of Fusion, we will use the case study contained in chapter 6 of 

Coleman et. al. [Coleman94] as an example. The requirements for this system have been 

reprinted in appendix A of this document. We will follow the modified development 

process stages showing how the system is developed. The modified Fusion methodology 

is used in stage 4

Stage 1: Establish a stable product definition and set of requirements.

The primary concern in this stage is to gather enough information to define the domain, 

identify required system functionality, and that allows the boundaries for the system to be 

defined. This stage is not directly addressed by Fusion and would be best served by the 

application o f domain analysis techniques. In our example, the product definition has been 

supplied through the statement o f requirements in appendix A.

Stage 2: Match the product definition to one or more standard architectural models.

It is at this stage where there begins to be a significant difference between creational and 

engineering based methodologies. In a creational based methodology, such as Fusion, a 

model would be created based on product knowledge showing the major system 

subcomponents and the high level interface between these components. In an engineering 

based methodology, the product can be recognized as belonging to a generic class o f 

products which have defined standard architectures proven over time as being suitable for 

product development. We identify these architectures through patterns. The steps to this 

stage are as follows:

Step 1: Analyze the product definition to determine the generic class o f the product.

•  Identify the terms that capture the fundamental characteristics o f the 

product.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

54

Step 2: Identify a set o f architectures proven suitable for this generic product class.

• Use the identified terms to search the architectural patterns using the 

context and problem fields.

Step 3: Assess each architecture to determine a best fit for this specific product.

•  Perform a technical analysis using the structure and dynamics fields with 

supporting information from the implementation, example, and example 

resolved fields to determine applicability.

Consider for a moment a simple requirement to connect two points on opposite sides o f a 

river. A quick analysis of this requirement suggests that the product required is o f the 

generic class bridge. Bridges have many different types o f architecture. A bridge may be 

a suspension, cable, or draw bridge. The engineer will identify how the bridge is to be 

used along with the physical characteristics o f the river banks and length o f the expanse 

across the river to determine the best bridge architecture. The principle is the same for
\
i this stage of software development.
t
5
i.

I In our example we have a requirement for a petrol purchasing system. I f  we abstract out

| the fact that the merchandise being sold is petrol, we can identify the system as belonging

to the generic class o f sale and transaction systems. Assuming the existence of a standard 

architecture library, we would find several different architectures for this generic class.

, There would be architectures for point o f sale systems, telemarketing sales systems,

j remote location sales systems, cash only sales systems, and so on. The first task o f the

software engineer would be to select from the set o f standard architectures for sale and
i
j transaction systems an architecture that best fits the requirements for this particular

product. The standard architecture will supply the fundamental high level design model 

for the system.

In our example, by realizing that the requirements describe a sale and transaction system 

that employs a customer operated dispensing unit that is monitored by an attendant 

responsible for processing payments, we could search our patterns library for architectural

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

55

patterns that have problem description that relate to this type of system. Appendix B 

contains an example o f  a pattern that might be selected. This pattern represents a very 

high level general structure of a potential solution. The companion patterns section would 

point to related architectural patterns that would be used to complete the detail o f the 

system.

How much work is required in this stage depends on the following:

1. Determination o f a generic class for the product may not be straight forward. Poorly 

written requirements or descriptions written in detail domain language may make it 

difficult to identify the generic characteristics o f  the product.

2. The underlying pattern definitions may not describe the architecture in terms or format 

that readily translates into Fusion models. The structure fields in the architectural 

patterns will provide the information necessary to construct the initial system object 

model. If these structures are defined in the patterns using techniques that are similar 

or the same as the methodology used to design the product, there would be 

considerable reduction in the effort required to build the initial design models.

Figure 11 represents a possible generic system object model obtained from the selected 

architectural patterns that might be retrieved from a properly populated library of standard 

architectures. Since such a library does not currently exist, this model was derived from 

the base example in [Coleman94] by abstracting away all the domain specific details of the

| system object model. In this generic state, this system object model could serve as a
{
\ starting point for many different sale and transaction systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

56

Inventory
C ustom er

o p erates ;upplied_b’ G oods

Sale

D ispenser
C ustom er R ecord De lively

Display
show su ses

paysfor

Paym ent

TokenReceipt earnsproduces

records
Attendant

Transaction Daily RecordTerminal
sto red  in stored inan n o ta tesu se s

Archive

i

1 Figure 11: Sale and Transaction Generic System Object Model

! It is reasonable to assume that the model in figure 11 would be a composite o f several

patterns. The relationships between patterns would be documented within the pattern 

definitions. Providing standard architectures as composites of patterns enhances the 

flexibility required to both adapt architectures for specific systems as well as enhancing the 

ability to apply the same architecture to many different domains and similar systems.

Stage 3: Produce a plan for developing the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

57

A plan is developed in this stage that defines the activity that must be performed to 

complete the architecture and develop the components o f the system. A vital part o f 

planning is the identification o f project risk. Basing system development on a standard 

architecture provides a firm foundation for project planning activity.

The generic architecture provides a clear understanding of the high level components 

needed for the system. The architecture should already identify all major system 

components. Furthermore, information in the associated patterns will lend insight into the 

use o f the architecture and potential areas of risk.

General system development risk is reduced by use o f a standard architecture since it is 

based on approaches already proven. Considerable information that is net available in 

traditional creational development will be captured in the pattern definitions which will 

increase understanding about the system which in turn reduces risk.

Stage 4: Employ Fusion to refine the models associated with the standard

architecture and adapt the associated standard components for this specific 

j  product.

I
| Fusion addresses the activities of this stage in the development process. The phases of

I Fusion are described Coleman et. al. [Coleman94] as a set of steps. We will now describe

how these steps are modified when Fusion is based on an engineering paradigm.

Analysis Phase

The primary purpose of this phase in Fusion is to create the fundamental system models 

that subsequent development will be based upon. This phase will experience the most 

impact from the adoption of software architectural development since the use of standard 

architectural models reduces or eliminates the need to create base system models.

Analysis Phase Step 1: Develop the Object Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

58

The purpose o f this step is to capture the concepts that exist in the domain o f the problem 

and the relationships between them. It entails brainstorming a candidate list o f classes and 

relationships, establishing a data dictionary, and constructing an object model.

Much o f the work in this step is eliminated by the use o f a standard architecture model for 

the product. Generic classes and their relationships are provided by the architecture. The 

work in this step becomes one o f  review and adaptation o f the standard architecture.

There may also be the need to translate the architecture into a Fusion object model if the 

pattern’s structure is not already expressed as one. We would then adapt the generic 

classes represented in the architecture to the unique features of the system. In this case, 

the Class Inventory becomes Storage Tank and the Goods contained within the Inventory 

becomes Petrol, Figure 12. The Dispenser class also becomes Pump. Attributes unique to 

this system should also be added to the classes at this time.

operates ;upplied_b'

showsuses

Petrol

Display

Customer

Delivery
Pump

Customer Record

Storage Tank

Figure 12: Standard Classes Adapted for Unique System

Further definition o f unique classes may also be needed if software is to be developed to 

control a specific object represented by a class. For instance, software may be needed to 

control the pump that will supply the petrol. I f  these classes represent entities that 

routinely occur in systems, then there should be standard architectures for those entities. 

Since we are using a standard development methodology, they can always be created if 

they do not represent routine design issues.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

59

Analysis Phase Step 2: Determine the System Interface

This step identifies the set o f system operations agents external to the system that will 

initiate system events which will produce system output in response. This activity defines 

the boundary for the system. The primary output of this step is the system object model. 

This model is a refinement o f the object model in that it identifies which classes in the 

model will be implemented within the system and which classes represent agents external 

to the system to be developed.

The context, problem, and solution sections of the patterns that define the standard 

architecture directly address the identification of system operations and system boundary. 

As such, the work usually required in this step is generally eliminated. The definitions 

provided by the patterns must be reviewed against the requirements to assure that the 

requirements will be satisfied. It is expected that some adaptation o f  the standard 

operations will be required and would be added in this step.

j,
| In our example, the system interface is defined as part o f the standard architecture. This

\ defined interface must be reviewed after the object model has been adapted for specific

| requirements to assure it is still appropriate.
j

I Analysis Phase Step 3: Develop an Interface Model

The interface model is composed of two distinct yet related models which are generated in 

' this Fusion step. The life-cycle model and operation model are defined in this step. The

| life-cycle model defines the allowable sequences of system interactions. It defines what

f operations respond to specific system events and in what order. The operation model
j

defines the semantics o f each system operation in the system interface. A specific template 

is used to document each operation in the operation model.

Scenarios are used by Bushmann et. al. [Bushmann96] to assist in the documentation of 

the dynamics of a pattern. Coleman et. al. [Coleman94] recommends that scenarios be 

developed to assist in the development o f the interface model. We could enhance the 

ability to capture the dynamic behavior o f patterns by adopting a more formal approach to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

60

dynamic definition such as the one used in Fusion. There already exists a common base 

through the use o f  scenarios. Patterns, as they exist today, must rely on free form text to 

supplement the information that cannot be captured in a scenario such as alternative paths.

The adoption o f the Fusion interface model as the basis for pattern dynamic description 

would also allow for more precision. This added precision supports the use o f 

measurement and formal methods for pattern selection as well as a basis for building 

system models that help predict system performance. All this makes a strong case for 

adopting a more formal representation for dynamic behavior definition such as the Fusion 

interface model.

To illustrate the expressive power o f the Fusion interface model consider the following. 

Lets assume that an architectural pattern named Transaction is part o f the standard 

architecture. In the dynamics section we would find a description of the behavior for 

accepting payment from a customer. Typically, it would be expressed using a scenario 

like the one in Figure 13. Scenarios are limited in what they can represent and tend to lack 

the degree of precision needed for a complete understanding of system dynamics Figure 

14 represents customer payment using Fusion. It allows sequences o f events to be clearly 

defined and provides a means to show alternative paths without the use o f  multiple 

scenarios.

enter_payment_details

dispense_tokens

request_receipt

dispense_receipt

System AttendantCustomer

Figure 13: Scenario for Payment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

61

Payment = NormalPayment | CusotmerAbsconds
NormalPayment = enter_payment_details.#dispense_tokens,[request_receipt.#dispense_reciept] 
CustomerAbsconds = enter_annotation

Syntax and Semantics of Life-Cycle Expressions

Alphabet Any input or output event may be used in an expression. Output events are prefixed with #.

Operators. Let x and y be life-cycle expressions, then

x.y denotes x is followed by y. 
x | y denotes either x or y occurs, 
x* denotes zero or more occurrences of x. 
x+ denotes one or more occurrences of x.
[x] denotes that x is optional.
x || y means arbitrarily interleaving the elements of x and y.

Substitutions. An expression can be named in a substitution: 
Name = Ufe-Cycle Expression

Name may be used in other expressions, but substitutions must not be recursive.

Operator precedence. In decreasing order the precedence is 
[ ] . * . ♦ . - . 1 . 11

Expressions may be bracketed to override default precedence.

Figure 14: Life Cycle for Payment as a Regular Expression

! As mentioned earlier, in Fusion, the dynamics o f a system are defined by the life cycle 

model and its companion operation model. Together they are called the interface model. 

The operation model clearly defines the change o f state and events that are output by

\ system objects. The operation model provides a schemata that aids in capturing this
I

information and simplifies the task o f translating the dynamic definition into actual code.

It would be appropriate to include the operation models as components in the standard 

component library and reference them in the pattern through the implementation section.
s
t

i
( Analysis Phase Step 4: Check the Analysis Models
fi
! Completeness and consistency of the analysis models is checked in this step. This remains

a necessary step and is unchanged by any modifications required to adopt an engineering 

paradigm. Reviews such as this play a major role in instilling discipline within the process 

and provide the visibility needed to manage the project as well as assure desired levels of 

product quality.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

62

Design Phase

The design phase in Fusion, like any software development methodology, is where the 

abstract models o f the domain and system requirements are transformed into software 

structures. The concern o f design for Fusion is the identification o f the objects which will 

be used to  implement each identified system operation along with the communication 

protocol between the objects.

In an engineering based environment, we will recognize the routine aspects o f a system 

and have available proven design components that can be used to satisfy system 

requirements. Software architectural development provides a means o f identifying routine 

design components for specific systems through the tie between the standard architecture 

and the underlying design. This tie is maintained by utilizing the companion patterns 

section o f  the architectural patterns. A software engineer will find references in the 

companion patterns section to design patterns which have been used in the past to 

implement the system architecture. The design patterns referenced will contain the 

information necessary for the engineer to assess their usefulness and guidance for any 

needed modifications to allow for unique aspects of the system. The following will 

describe each Fusion design step as it would be implemented based on these principles.

Design Phase Step 1: Develop the object interaction graphs.

This step develops a set o f graphs that define how the functionality for system operations 

is distributed across the objects of a system. It identifies the relevant objects involved, 

establishes the role of each object, defines the messages between objects, and records how 

the objects interact.

These graphs are concerned with the design o f  the dynamic behavior o f the system. 

Therefore, we would expect to find information necessary for producing these graphs in 

the dynamics, implementation, preconditions, and possibly the companion patterns 

sections o f  the architectural and design patterns that define the standard system. Exactly 

which sections will be used and whether the information is contained in the architectural

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

63

t

patterns or a set o f associated design patterns will depend upon the complexity of the 

system under development and the method used to document the patterns. More complex 

systems will require more decomposition in their description and will incorporate more 

patterns. Therefore, in this case it will not be possible to capture the level o f detail needed 

to develop object interaction graphs in the dynamic sections of the architectural level 

patterns. This level o f detail would be found in the associated design patterns referenced 

through the companion patterns section. The detail for smaller less complex systems 

might be captured in the dynamic descriptions o f the architectural patterns.

I f  the patterns are documented using Fusion, then the interaction graphs would be found 

as part o f the implementation description for the architectural and design patterns. If  the 

pattern descriptions are of a more generic format, the software engineer will be required to 

transform the dynamic information into Fusion notation.

Regardless o f the complexity or format o f the patterns the activities in this step remains 

the same. Object interaction graphs are established for the standard architecture. This

I provides a generic model which can then be modified to include the unique specifications
i
} for this specific instance of the software product under development.
i
jj" Design Phase Step 2: Define a visibility graph for each class.
'i

Up to this point it has been assumed that all objects are mutually visible and can send 

messages to each other. In this step object visibility is defined in detail. Identification for 

I each class is made of the objects that need access and the appropriate kinds of reference to
I
| those objects. Each message in an interaction graph is inspected and a decision is made as
1
| to the kind o f visibility reference required based on the lifetime o f the reference and the
f

target objects visibility, lifetime, and mutability.

Although generic designs may suggest object visibility, the unique characteristics o f a 

specific instance o f a product will heavily influence what the final object visibility should 

be. Therefore, this step in Fusion remains essentially unchanged.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

64

Design Phase Step 3: Develop class descriptions

The class descriptions specify the internal state and external interface required by each 

class. They serve as the basic specification for coding. Class descriptions record:

• methods and parameters

• data attributes

• object attributes

• Inheritance information

Generic class descriptions should exist in the standard component library. They are 

referenced by the patterns used in system design through the implementation section. The 

primary task in this step is to modify the data and object attributes. Data attributes are 

modified to include unique characteristics o f the product. Object attributes are modified 

to reflect the visibility definitions established in the visibility graphs.

* Design Phase Step 4: Develop inheritance graphs

I
! This step is used in creational based Fusion to review the objects and classes and define

| superclasses and subclasses. This step should not be necessary following an engineering

I based methodology since the basic structure of the system is previously defined through

the use of routine architectures.

Design Phase Step 5: Update class descriptions

I
| In creational based Fusion, the inheritance information developed in step 4 must be

| included in the class descriptions. This step will also be eliminated in an engineering based

methodology for the same reason sited in step 4.

Implementation Phase

The two primary strengths o f Fusion is its well defined process and the flow from one 

model to another all the way through implementation. Because o f the strength o f Fusion’s 

set of models, we can consider two alternatives to engineering based implementation. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

65

first alternative follows closely to conventional code reuse techniques. The 

implementation sections o f the design patterns could reference code segments that would 

implement the design in a generic fashion. The code could then be modified to fit the 

unique needs o f the product. The second alternative is to write the code based on the 

system life cycle models and class descriptions referencing idiom patterns to support 

development o f method bodies.

We can consider the second alternative because development o f the actual code from these 

models is fairly straightforward since the majority o f the complex design decisions have 

already been made and the structure o f the class descriptions follows closely the 

component structure used in object oriented programming languages. Additionally, 

coding activity expends a relatively small amount o f the total system development cost 

[Boehm81], Therefore, the cost o f maintaining and using code components in a standard 

library may do little to reduce overall system development cost.

Relying on standard code components may also preclude the use of fourth generation 

languages and automated code generators. We would also be required to maintain several 

different code components for the same design to accommodate different platforms and 

languages.

By maintaining class descriptions and idiom patterns as the base component parts, we 

increase the ability to apply the architecture and its associated standard components to 

many different domains and implementation platforms and languages. Idiom patterns, 

which are language dependent, provide the necessary guidance to develop code segments 

not directly addressed by the class descriptions. These segments would address specific 

repeating functionality, error handling, and iteration within the method body.

5.1.5 Review of Engineering Based Fusion

Fusion provides a well structured approach to software development. We have shown 

that the creational basis o f Fusion can be removed and replaced by architectural 

development techniques. This transformation retains all the benefits of Fusion while

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

66

enhancing the overall methodology. In the evolved methodology, we have eliminated the 

brainstorming and iterative discovery common in analysis and compressed the overall life 

cycle. We have also provided a means o f basing development on proven software 

components (architectures, design, code, test cases, etc.) which enhance the ability to cost 

and manage projects and reduce overall project risk. We have also shown that Fusion 

provides representations that can be incorporated in the pattern definition to enhance the 

pattern’s descriptive capabilities.

5.2 Evolving Rapid Application Development with Software Architectural 

Development

Rapid Application Development (RAD) is a methodology created specifically for the 

development of information systems. It is designed to be used within the context of 

Information Engineering. It was created to specifically address the need to produce 

information systems in less time at lower cost while maintaining high product quality. The 

methodology relies heavily on the use o f small development teams using advanced code 

generation tools based on a rich repository. Appendix C is an outline of the overall 

methodology. The outline is derived from the method charts found in [Martin91], Not all 

the specifics were included in the outline. It is included to provide a reference framework 

for discussing how this methodology would evolve into an engineering based 

methodology.

RAD establishes a development team that incorporates the user as an active participant in 

all phases o f development. The basic premise is to quickly develop system requirements 

and design with user support within the overall context o f a pre-established business 

enterprise model that defines the overall business goals and information system needs for 

the organization. Requirements and design are then translated into a software system by a 

succession o f prototypes created by small teams. These prototypes are developed in short 

development cycles that allow the user to review the product and provide feedback in a 

timely fashion. The primary justification for this approach is the realization that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

67

requirements quickly become outdated for large systems when there is an attempt to 

completely define the requirements before developing the system.

Control o f system development relies upon the use o f CASE tools to enforce coding 

standards. Automatic code generators are also used to quickly develop data screens, 

reports and basic system functionality.

The RAD methodology is used to implement the System Planning and Design, and 

Construction and Cutover phases o f Information Engineering, figure 3. As such, we will 

restrict our focus to these phases o f the overall process.

5.2.1 Basic Need for Evolution to an Engineering Based Paradigm

The creator o f the RAD methodology might well contend that this methodology is already 

based upon the engineering paradigm as it has been defined in this document and to a 

degree we would agree. The incorporation o f a development repository for software 

| artifacts along with aspects o f the methodology that encourage developers to search for

|  similar existing systems does move the methodology in the right direction.

*
| However, there is nothing in the methodology that addresses the use o f artifacts found in
*

■' the repository within the context o f defined standard architectures. The closest thing to

this notion is the use o f a master encyclopedia for the data models. The encyclopedia is

used to assure that the various systems developed do not corrupt the overall data base for 

t the organization.
I
f
j What is needed then to completely establish this methodology as an engineering based
>■

t  methodology is to incorporate an activity that allows the repository artifacts to be used

based on the identification and utilization of standard architectures.

5.2.3 Modifications to System Planning and Design Phase

The system planning and design phase is addressed by sections 3 and 4 in the RAD 

outline, appendix B. Requirements planning and design is accomplished by the use of two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

68

well defined techniques called Joint Requirements Planning (JRP) and Joint Application 

Design (JAD). They are called “Joint” in that requirements and design are developed 

jointly with the user. The basic premise is that development is expedited when both 

software developers and the users who have authority to decide what the system is to do 

work together to  produce the requirements specifications and top level design. 

Requirements and design are developed in workshops that drive the development team 

toward consensus on the final requirements specification and design. Emerging 

requirements and design are captured in a CASE tool that can be used to quickly create 

prototypes that help the team visualize the system. JRP and JAD may be conducted as 

two separate activities or as one depending on the complexity o f the system to be 

developed.

Part of the preparation for a JRP or JAD workshop is to prepare an initial model of the 

requirements specification or design. The current description o f RAD relies upon research 

o f existing systems used by an organization and a general review of information 

I maintained in the repository. Our approach to completing the evolution o f these activities

[ to an engineering based paradigm is to formalize this research based on the use of standard

 ̂ architectures and patterns as previously described.

f
I The research step 3.2 in the outline becomes more aligned with domain analysis and the

development o f the system specification. The main bulk o f this step is already concerned 

with discovering the fundamental information needed to define system functionality and to 

create a development plan. Sub steps 3.2.6, 3.2.7, and 3.2.8 would be removed from this
i
f step. These steps are used to create a tentative prototype o f the developing system that is

( used in the JRP to help team members to visualize the system. It is also expected that the

' artifacts identified in these sub steps would become the basis for the new system.

What is desired in the requirements planning phase is the documentation o f requirements 

in terms o f the domain and the selection o f a standard architecture as the basis for further 

design and implementation. Selecting artifacts from the repository without an established 

architecture is premature and could lead to adopting solutions too early in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

69

development cycle. The system specifications define the problem. This description is used 

to search for architectural patterns that have been used as solutions to the problem. A 

standard architecture can be identified through this search.

The selected standard architecture becomes the basis for the first JAD workshop. It will 

provide either the initial design diagrams or the information needed to create initial 

diagrams. What is provided by the architecture depends upon how the architecture is 

defined in the underlying patterns. These initial diagrams are created in sub step 4.1 as 

part o f the workshop preparation. Having this foundation expedites the workshop. The 

main concern o f the workshop is to identify the unique aspects o f the system and adapt the 

architecture and fundamental design already provided by the standard components. It 

would be expected that the bulk o f the effort expended in this step would be to define the 

user interface portion of the system. There would also be a need to review the 

architecture with respect to its interface with other systems within the overall enterprise.

I 5.2.4 Modification of the Construction and Cutover Phase

|  The requirements planning and design phase concludes once four types o f design diagrams

t have been developed for the system. The entity-relationship diagram defines the logical
I
\ design o f the underlying data base. The decomposition diagram defines the major system

processes and decomposes each process into its constituent functional components. The 

dependency diagram which is a data flow diagram shows data entity transformations

\ through the functional components. The action diagram is a structured textual description

I o f  the functional components similar to pseudo code. The purpose o f this phase is to

translate the entity-relationship diagram into the physical data base structure and use the
v

remaining three diagrams to develop the system code. Current information system 

development relies heavily upon tools that automatically create physical data base 

structures from logical models and the use o f  fourth generation languages to develop 

functional code. The existence of these tools provides support for the notion o f only 

maintaining patterns in our standard components library. The effort required to create the 

physical representations of the design is small compared to the overall development effort

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

70

and does not justify maintaining large code libraries. The one exception would be 

commonly used standard functions that roughly correspond to idiom patterns. These 

types o f  functions are usually provided by the fourth generation language systems. Some 

o f these tools, such as PowerBuilder, also provide a means for the developer to create 

user defined functions as well.

In light o f this, there is little change needed to the steps supporting this phase. The only 

addition would be the use of idiom patterns to extend the breath o f functions available to 

the user or to aid in the selection o f the best approach to low level code structure.

5.2.5 An Example of Engineering Based RAD

The RAD methodology is intended to produce a product that is structurally different to 

the object oriented product produced by Fusion. The basic software architecture will be 

segmented along the general lines o f data representation and functional representation.

Data representation or modeling is the predominant concern o f this methodology. The 

primary goal in the software architecture will be to first capture the data entities and their 

relationships and then capture the processing o f the data. A  data entity is a meaningful 

related set o f information that retains state over time. The relationships between entities 

imply that one entity takes action or maintains a certain state relative to another entity 

[RG94]. What is needed then from a basic system architecture is a data model for the 

system, identification o f system functions or processes, and a representation of how the 

defined system processes interact with the data. Let us assume that we are using the same 

set o f patterns described in the Fusion examples and that these patterns are described 

using Fusion. This immediately introduces the need to add a  translation step for RAD 

based development. However, this does not introduce significant overhead to 

development and will serve to further illustrate the advantage o f having standard 

architectures and component libraries based on patterns.

Referring back to Figure 11 we can derive the data model shown in figure 15. The 

concern o f the data model is to capture the entities that will have persistent information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

71

and identify the relations between them. The data model shows that a dispenser is related 

to many customer records while each customer record is only related to one dispenser and 

so on.

As shown, the data model is incomplete since the attributes for the entities are not defined. 

Attributes in a data model become the fields within the tables each entity represents. The 

attributes also carry a good deal o f information regarding the use o f the data model. For 

instance, the data model as shown does not indicate that the attendant can annotate the 

transaction record. The attribute “annotation” should be added to the transaction entity to 

capture the fact that transactions can be annotated. The method for entering the 

annotation is not captured in a data model. This highlights the primary difference between 

an object model and a data model. The information based architecture will remain more 

abstract that the object model in that it never truly captures the system structure in terms 

of real world objects. We must split data and functionality into two different models then 

show their relationship in a third.

T

Receipt
-O-

-O-
Paym ent

-O-

T
J

A

Customer Record Dispenser Delivery
-O----— c x

T

Transaction Daily Record Archive
> 0 —0 - > 0 - 0

Figure 15: Data Model for Sale and Transaction Architecture

The next model to be built would be the process decomposition model. Once again we 

can derive this model from the system object model. The majority o f the relationships 

recorded in the system object model represent system functionality. In addition, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

72

operation model is a source for system process definitions. To illustrate the process 

decomposition model consider the process “payment” shown in figure 14. Figure 16 

shows how these functions would be represented in a process decomposition model. You 

will notice that all notion o f allowable sequence is lost. This information would be 

captured in the action diagrams.

request receiptdispense tokens dispense receipt

Payment

enter
payment
details

Figure 16: Process Decomposition Model for Payment

To complete the architecture we will need to create a data flow model that represents data 

entity transformation by the processes and an action diagram to capture the process flow 

t of system dynamic activity. We will not develop this portion of the architecture since the

| examples already given are adequate to demonstrate the principle o f architectural based

| development and the use of standard architectures in conjunction with standard
I
| component libraries populated by patterns.

5.2.6 Review of Engineering Based RAD

\ The primary change in this methodology is the inclusion o f standard architectures as a

j basis for system development. The methodology already supports the use o f a repository.
i
j  However, the methodology is creational since the repository is only used to support the
£

development o f new models. We have also demonstrated that the patterns supporting a 

methodology need not be described using that methodology’s nomenclature. In particular, 

patterns expressed in terms of objects are readily translated into models traditionally used 

for information system development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

73

5.3 Summary of Methodology Evolution

In this chapter we have shown how the template pattern and general development 

technique based on software architectural development, described in chapter 4, can be 

used to evolve existing methodologies from a creational based paradigm to an engineering 

based paradigm. Patterns provide a template for the capture o f information about 

components at the architectural, design, and code level. The patterns can then support a 

system whereby domain specific specifications can be related to software architectures, 

architectures to detail design components, and design components to code components. 

This system also supports the integration o f a standard component repository to enhance 

the ability to reuse actual software components.

We have also demonstrated how this technique can be combined with existing 

methodologies, specifically Fusion and RAD. By combining our pattern based technique 

with existing methodologies, we enhance the methodology’s ability to support routine 

repetitive software development while retaining the advantages the methodology was 

created to provide. By using Fusion and RAD as example methodologies, we have shown 

that this technique can be combined with any methodology regardless of software domain 

the methodology was developed to support. The inclusion o f support for routine software 

development is essential to evolve methodologies out o f  creational based software 

development software engineering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

6.0 Conclusion

6.1 Existence of Scientific Basis to Support the Paradigm Shift

We have already stated that engineering is based on scientific discovery. Having defined 

what we believe to be a proper definition o f software engineering and having described the 

evolution of basic process models and methodology to support that definition, we must 

still determine if there exists a sufficient scientific basis for the performance o f engineering 

activity.

A key to determining the existence o f a scientific basis is our ability to measure software 

components. Engineering disciplines rely on established systems o f measurement and 

proven relationships among measures [Card88]. These measures originate from scientific 

discovery. If then there exists a system of measures capable o f supporting development 

activity, we can conclude that a sufficient scientific basis exists to perform software 

engineering.
t
t

I A quick survey o f publications will provide a large listing o f references on measures for

\ software components. There are measures for complexity, coupling, cohesion, reliability,

understandability, performance, quality, and so on. One can also find that these measures 

have been found to serve as a basis for software development. What one will not find is
e
f

1 universal acceptance o f the measures or broad application of the same measure. Metrics

| tend to be most effective in specific domains or within specific organizations.

So then the issue with software measures is not one o f their existence but one concerning 

their precision and standardization across the industry. Lack of precision or 

standardization does not preclude the use o f measures as support for software 

engineering. Indeed, the adoption of engineering discipline will improve measurements by 

providing structure and repeatability both in process and reuse of the products being 

measured.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

75

Another key area o f scientific support is the establishment o f theory. Theories are needed 

in software engineering to establish search systems to correlate domain problem 

descriptions to architecture, establish architecture structures, define compatibility of 

design components, and establish program code structures to name only a few areas 

needing support.

Once again the issue is not one o f the existence of theories but one o f sophistication, 

formal definition, and wide spread applicability.

Computing science has provided the basis for the performance o f software engineering. 

Our scientific basis may not be as precise as we wish nor are our theories as well defined 

as we would like. Nevertheless, development environments can and have been built on 

this body of science that support software development.

It is important to remember that the establishment of theory in engineering practice 

follows a recognizable pattern that often has a cycle time o f  up to twenty years. Most 

\ theories begin by recognizing repetitive successes as hoc solutions. Eventually these

■ solutions are accepted informally as a set o f folklore. As the folklore becomes more

| systematic, the solution is codified as a set o f heuristics and rules of procedures.

I Eventually these codified procedures become crisp enough to support theories. These

help to improve the practice which allows us to consider harder problems and thus start 

the cycle over again [SG96].

| One of the advantages we would hope to see from the adoption of software architectural

I development is a shortening of the cycle time associated with theory development. We
t

I can expect this from the more formal definition o f routine repeatable development activity.

{ On the other hand, the lack of standardization across the industry itself may prove to be

advantageous from a business standpoint since it provides an organization the opportunity 

to create a competitive advantage that is non-reproducible in other organizations. Where 

this may be a business advantage it will impede overall movement in the software industry 

towards true software engineering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

76

6.2 Related Work

Through out this work, we have cited several areas o f research focused on the underlying 

technologies that are brought together in the implementation o f software architectural 

development. The two most notable o f these technologies are software patterns and 

software architectures. We were unable to find any work suggesting that the fundamental 

underlying paradigm o f software engineering must be changed to advance software 

engineering practice. However, the goals o f research in domain engineering are very 

closely related to approaches proposed in this thesis. These similarities are most clearly 

seen in the work by Peterson and Stanley [PS94] where they propose a technique for 

mapping domain models and software architectures to generic designs. Their work is 

based on the following two premises:

1. A domain model, the product o f  domain analysis, embodies the requirements for 

software in a domain.

I 2. Software architectures exist that provide a framework for generic designs.
i|
| Although not directly stated in this work or related work in domain engineering, there is a

i strong implication that software engineering should evolve to be based on the
f
j establishment o f well understood domain models that map to defined architectures and

designs. Similarly, we see this same unstated theme in work related to the use of software 

architectures [WL97], This in principle is that same goal for software architectural 

; development. We certainly see opportunity to incorporate the concepts o f domain
i
t engineering with software architectural development. We also feel that although work in
I
! domain engineering does not specifically call for a change in the underlying paradigm o f

software engineering, it supports the need for a reevaluation o f the current paradigm.

6.3 Summary

Software development can become a true engineering discipline. The greatest challenge to 

evolving software development from a craft to an engineering discipline is not technical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

77

but mental. Software developers must begin to view software development as the routine 

application o f software components to recurring problems based on established software 

architectures as opposed to seeing each project as the creation o f  a new design and 

program.

The process models and methodologies commonly used today are easily transformed to 

support this engineering paradigm. They are transformed by identifying those portions o f 

the process or method that are creational and replacing them with techniques based on 

software architectural development.

Software engineering is also domain independent. From our application o f software 

architectural development to both Fusion and RAD we have shown that there are 

underlying engineering principles that can be applied regardless o f  domain or type of 

system being developed. We have also shown that process models share a common 

heritage. This suggests that we should not think o f software processes and methodologies 

as being domain specific but rather as defining generic processes and methods that are 

based on engineering principles that can be tailored for specific domains. By doing so, we 

will begin to realize that traditional barriers between domains such as business applications 

and scientific programming are artificial and begin to be able to benefit from advances in 

) computing in industry at large.

6.4 Future Work
*
[ The obvious next step to this work is to create a working development environment based
f
j on the engineering paradigm and techniques described. To accomplish this we will have to

I combine elements from many related fields o f research.

Patterns and pattern systems will need to be developed that support the mapping of 

architectures to domain oriented problems as well as relate design patterns to architectural 

patterns and code or idiom patterns to design patterns. This task will require combining 

elements o f research from domain engineering, patterns, architecture languages, design 

modeling, and code abstraction techniques.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

78

The patterns and standard software components will require a robust repository.

Elements from research in repository data base design and software component reuse will 

be needed to implement this portion o f the environment.

Appropriate standard architectures and other standard software components will need to 

be created. Techniques that have been developed to transform components in legacy 

systems into reusable components will be helpful in this activity.

Activity within the environment must be managed. Process activity and products 

produced should be monitored and a process improvement system should be put in place. 

The practices described in the Capability Maturity Model [PCCW93] provide an excellent 

guide for the establishment o f a process improvement process.

As one can see, the actual creation o f a software development environment based on the 

principles in this thesis would be a major undertaking. Then again, this should be expected 

since the underlying premise has been derived in a revolutionary rather than evolutionary 

|  manner. A major shift is required in software development to bring it towards a software

j engineering discipline. There is a wealth o f  research available to support this

| revolutionary shift. Adoption of the definition of software engineering provided in this

I thesis and the establishment of software architectural development as the basis for
I

software development technical activity may provide the focus necessary to bring this 

large body o f research together into a full engineering discipline.

i
f

f
t
i
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

7.0 References

[BCG83]

[Beck94]

[Benington56]

[Best95]

[BMB96]

£

t [BMRSS96]
t
t
r.
I
I [Boehm81]
ti

[Boehm88] 

j [Brown]

r

I
i

[Card88]

[CN96]

Balzer, R., Cheatham, T. E., Green, C., “Software Technology in the 

1990s: Using a New Paradigm”, Computer, Nov. 1983, pp. 39-45.

Beck, Kent, “Patterns Generate Architectures”, ECOOP’94.

Benington, H. D., “Production o f Large Computer Programs”, Proc. 

ONR Symp. Advanced Programming Methods for Digital 

Computers, June 1956, pp. 15-27.

Best, Larry, “What is Architectural Software Development” . 

http://www.c2.com/ppr/ams.html, 1995.

Briand, L. C., Morasca, S., Basili, V. R., “Property-based Software 

Engineering Measurement”, IEEE Transactions on Software 

Engineering Vol. 22, No. 1, Jan. 1996.

Bushmann, et. al., Pattern-Oriented Software Architecture: A System 

o f Patterns. Wiley, 1996.

Boehm, B., Software Engineering Economics. Prentice-Hall, 1981.

Boehm, Barry, “A Spiral Model o f Software Development and 

Enhancement”, IEEE Computer, May 1988.

Brown, Kyle, “Using Patterns in Order Management Systems: A 

Design Patterns Experience Report”, 

http ://www. ksccary. com/ptmjml. html.

Card, David, “The Role o f Measurement in Software Engineering”, 

Proceedings Software Engineering 88, IEE/BCS, 1988.

Clements, Paul, Northrop, Linda, “Software Architecture: An 

Executive Overview”, CMU/SEI-96-TR-003.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.c2.com/ppr/ams.html


www.manaraa.com

80

[Coleman94]

[Fowler97]

[GS93]

[Humphrey89]

[Johnson92]

[KBAW94]

rt
| [Martin90]
tt
j

[Martin91]

[MJ82]

J
I [MM96]

[PCCW93]

Coleman, Derek, et.al., Object-Oriented Development: The Fusion 

Method. Prentice Hall, 1994.

Fowler, Martin, Analysis Patterns: Reusable Object Models. 

Addison-Wesley, 1997.

Garlan, D. , Shaw, M., “An Introduction to Software Architecture”, 

Advances in Software Engineering and Knowledge Engineering, Vol.

1., River Edge, NJ: World Scientific Publishing Company, 1993.

Humphrey, Watts, Managing the Software Process. Addison-Wesley, 

1989, ISBN 0-201-18095-2.

Johnson, Ralph, “Documenting Frameworks using Patterns”,

OOP SLA’92.

Kazman, R., Bass, L., Abowd, G., Webb, M., “SAAM: A Method 

for Analyzing the Properties o f Software Architecture”, Proceedings 

oflCSE 16, May 1994, pp. 81-90.

Martin, J., Information Engineering (a trilogy), Prentice-Hall, Inc., 

Englewood Cliffs, New Jersey, 1990.

Martin, J., Rapid Application Development. Macmillan Publishing 

Company, 1991.

McCracken, D. D., Jackson, M. A., “Life-Cycle Concept Considered 

Harmful”, ACM Software Engineering Notes, Apr. 1982, pp. 29-32.

Motsching-Pitrik, Renate, Mittermeir, Roland, “Language Features 

for the Interconnection o f Software Components”, Advances in 

Computers Vol. 43, 1996.

Paulk, M. C., Curtis, B., Chrisis, M. B., Weber, C. V ., “The 

Capability Maturity Model for Software, Version 1.1”, Technical 

report SEI-93-TR-24, Software Engineering Institute, Carnegie

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

81

[Pfleeger91]

[PS94]

[PW92]

[RG94]

[RGI75]

[Royce70]

[RZ96]

[SG96]

[Sommerville96]

Mellon University.

Pfleeger, Shari, Lawrence, Software Engineering: the Production of 

Quality Software Second Edition. Macmillan Publishing Company, 

1991, ISBN 0-02-395115-X.

Peterson, A. S., Stanley, J. L. Jr., “Mapping a Domain Model and 

Architecture to a Generic Design”, Technical Report CMU/SEI-94- 

TR-8, Software Engineering Institute, Carnegie Mellon University, 

1994.

Perry, D. E . , Wolf, A. L. “Foundations for the Study of Software 

Architecture”, Software Engineering Notes, ACM Sig-Sofi 17, 4, 

October 1992, pp. 40-52.

Reingruber, Michael, Gregory, William, The Data Modeling 

Handbook: A Best-Practice Approach to Building Quality Data 

Models. John Wiley and Sons, 1994, ISBN 0-471-05290-6.

Ross, D., Goodenough, J., Irvine, C.A., “Software Engineering; 

Process, Principles, and Goals”, IEEE Transactions o f Software 

Engineering, May 1975.

Royce, W. W. , “Managing the Development o f Large Software 

Systems: Concepts and Techniques”, Proc. Wescon, Aug. 1970.

Also available in Proc. ICSE 9, Computer Society Press, 1987.

Riehle, D., Zullighoven, H., “Understanding and Using Patterns in 

Software Development”, Theory and Practice o f Object Systems v. 2, 

n. 1, 1996.

Shaw, Mary, Garlan, David. Software Architecture: Perspectives on 

an Emerging Discipline. Prentice Hall, 1996.

Sommerville, Ian, Software Engineering Fifth Edition. Addison-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

82

[W E 96]

[WL97]

[Yourdon86]

i
\'»
f
I

I

Wesley, 1996, ISBN 0-201-42765-6.

White, S., Edwards, M., “Domain Engineering: The Challenge, 

Status, and Trends”, Proceedings IEEE Symposium and Workshop 

on Engineering of Computer-Based Systems, March 1996.

S. A. White and C. Lemus, “The Software Architecture Process”, in 
proceedings o f ASME-ETCE 97, The Energy Engineering 
Symposium of Energy Week' 97, pp. 170-175, Houston TX., Jan. 29 
- Feb 2, 1997.

Yourdon, Ed, Structural Design: Fundamentals o f a Disciplined 

Program & Systems Design. Prentice Hall, 1986, ISBN 0138544719.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Appendix A: Requirements for Example Problem

Reprinted from [Coleman94 pages 144,45]

A computer-based system is required to control the dispensing of petrol, to handle 

customer payment, and to monitor tank levels.

Before a customer can use the self-service pumps, the pump must be enabled by the 

attendant. When a pump is enabled, the pump motor is started, if it is not already on, with 

the pump clutch free. When the trigger in the gum is depressed, closing a microswitch, 

the clutch is engaged and petrol pumped. When it is released, the clutch is freed. There is 

also a microswitch on the holster in which the gun is kept that prevents petrol being 

pumped until the gun is taken out. Once the gun is replaced in the holster, the delivery is 

deemed to be completed and the pump disabled. Further depressions of the trigger in the 

t gun cannot dispense more petrol.. After a short standby period, the pump motor will be

| turned off unless the pump is reenabled.
(t
[ A metering device in the petrol line sends a pulse to the system for each 1/100 liter
F
£ dispensed. Displays on the pump show the amount dispensed and the cost.
t
\

There are two kinds o f pump. The normal kind allows the user to dispense petrol ad lib. 

The sophisticated pumps, imported from New Zealand, allow the customer to preset eitherfi.
• an amount or a volume of petrol. Petrol will then be pumped up to a maximum of the
r

j required quantity.
!

Transactions are stored until the customer pays. Payment may be either in cash, by credit 

card, or on account. A  customer may request a receipt and will bet a token for every 5 

pounds spent. Customers sometimes abscond without paying and the operator must 

annotate the transaction with any available information (e.g., the vehicle’s registration).

At the end of the day, transactions are archived and may be used for ad hoc inquires on 

sales.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

84

At present, two grades o f petrol are dispensed from five pumps on the forecourt. Each 

pump takes its supply from one o f  two tanks, one tank for each grade. The tank level 

must not drop below 4 %  o f the tanks capacity. If  this happens, the pumps serviced by the 

tank cannot be enabled to dispense petrol.

j
t
t:t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Appendix B: Example Architectural Pattern

The example in this appendix is only a partial pattern definition o f an architecture for a 

sales and transaction system. It is intended to provide sufficient detail to demonstrate the 

use o f architectural patterns in system development as described in this thesis.

Field Description

N a m e Self-Serve Sales Transaction

This pattern divides a self service marketing system into two 

components. The sales component provides the functionality required 

to service a customer request. The transaction component provides 

the functionality to process payment.

P a t te r n  T y p e A rchitectural

Also Known As None

Example Suppose we are developing a system to  sell gas at a gas station. The 

customer initiates a sale by activating a pump. The system must 

supply the desired amount o f gas and register the purchase. Notice o f 

the sale is sent to the station attendant. The customer then goes to the 

attendant’s window where payment is given for the gas.

C o n t e x t A system with independent cooperating components specialized 

for the purchase of goods supporting self service acquisition of 

goods and attended paym ent for goods.

P r o b le m There are two types o f components where one is used to provide an 

interface for the purchase and dispensing o f goods, and the other type 

o f component processes and records the actual purchase. These 

components are always separated physically and there are usually 

more than one of each type of component in a given system. The

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

86

purchase component is used by a customer and the processing of the 

sale component is used by an attendant The purchasing component 

must be able to sense the start and finish o f the dispensing o f goods. 

Information recorded by the dispensing component must be accessible 

by the purchasing component.

S o lu t i o n Define to component types called “Sale” and “Transaction.” The 

Sales component provides the customer interface and functionality 

necessary to dispense goods. The Transaction component provides 

the attendant’s interface and the functionality necessary to process the 

actual purchase of goods.

i

*

f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

87

S tr u c tu r e Inventory

operates ipplied_b'

uses
stored in

SalesTransaction: ((Delivery.Payment) 
DispenserOutOflService)*.archive

D y n a m ic s

Delivery = (not shown)

Payment = NormalPayment | CustomerAbsconds
NormalPayment = enter_payment_details.#dispense_tokens.

[request_receipt.#dispense_rectipt] 
CustomerAbsconds = enter annotation

DispenserOutOffService = (not shown)

Goods

Customer

Attendant Archive

Transaction

Sale

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

88

Operation Model for each operation in the life cycle model. 

Model only shown for enter_paym ent_details.

Operation: enter_payment_details

Description: Receive payment form a custom er and dispense 

promotional tokens, such as value stam ps, to the customer.

Reads: amount_of_sale

Changes: transaction_record

Sends: dispense_tokens

Assumes: goods have been received by customer

Result: Paym ent is received, the transaction record indicates 

payment received, and prom otional tokens have been dispensed 

to the customer.

I m p l e m e n t a t i o n Payment Class 

Sale Class 

Transaction Class

Example

Resolved

Variants

Known Uses

Consequences

P r e c o n d i t i o n s

C o m p a n io n

P a t te r n s

Self Serve Dispenser

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

89

See Also

C o n s t r a in t s

r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Appendix C: The RAD Life Cycle

RAD Life Cycle

1. Before the Project Begins

1.1. Select the tools

1.2. Establish the methodology

1.3. Select and train the practitioners

2. Initiate the project

2.1. Obtain commitment o f the Executive Owner

2.2. Establish the IS team

2.3. Customize the methodology for this system

2.3.1. Select the appropriate variants o f  the methodology

2.3.1.1.Toolset

2.3.1.2.Timebox

2.3.1.3. Combination of requirements planning and user design 

phase

2.3.1.4.Parallel Development 

2.3.1.5 .Reusability

2.3.1.6.Data Administration 

2.3.1,7.Information Engineering 

2.3.1.8.Object-Oriented Reusability

3. Requirements Planning Phase

3.1. Preliminaries

3.1.1. Establish the need for a system

3.1.2. Determine the scope of the system

3.1.3. Determine the key user executives

3.2. Research

3.2.1. Identify overall objective of the system

3.2.2. Become familiar with the current system

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

91

3.2.3. Explore what changes are needed in the current system

3.2.4. Find what relevant information exists in the I-CASE repository

3.2.5. Explore the BAA study or similar planning

3 .2.6. Explore what structures or designs might be reusable

3.2.7. Research similar systems that might offer guidance or ideas

3.2.8. Create a tentative overview o f the new system in the I-CASE 

repository

3.3. Prepare the workshop

3.3.1. S elect workshop participants

3.3.2. Prepare the materials

3.3.3. Customize the JRP agenda

3.3.4. Hold the kick-off meeting

3.4. Conduct the workshop

3.4.1. Initial review

3.4.2. Determine system functions as a whole 

| 3.4.3. Examine each process
f
 ̂ 3.4.4. Determine cultural changes that will be caused by the system

\ 3.4.5. Summarize benefits and risks
I

! 3.4.6. Determine how to maximize the benefits1r
3.4.7. Assess the risks

3.4.8. Determine how to minimize the risks 

j 3.5. Create the JRP documentation

\ 4. User Design Phase

| 4.1. Prepare for JAD workshop
/

4.2. Conduct the first design workshop

4.2.1. Create entity-relationship diagrams

4.2.2. Create process decomposition diagrams

4.2.3. Create process dependency diagrams

4.2.4. Create action diagrams

4.2.5. Design screens

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4.2.6. Identifying prototpying

4.2.7. Design reports

4.2.8. Determine what data the system uses

4.2.9. Determine what processes the system uses

4.3. Establish the construction teams

4.4. Review and refine the design

4.5. Establish the project repository contents

4.6. Conduct the second design workshop

4.6.1. Review experience in using the prototypes

4.6.2. Review the end users’ questions and suggestions

4.6.3. Discuss enhancements that are necessary

4.6.4. Review the overall design

4.6.5. Finalize design

5. Construction Phase

5.1. Construct detail design of the system structure

5.2. Build transactions one at a time with reusable templates

5.3. Perform usability tests

5.4. Perform ongoing integration

5.5. Design and prepare for cutover

5.6. Integration testing

5.7. Create physical design of data base

6. Cutover Phase

6.1. Install and adjust the pilot system

6.1.1. Set up the production procedures

6.1.2. Install the production system environment

6.1.3. Perform data conversion

6.1.4. Implement the new system in production

6.1.5. Review the system installation

6.1.6. Expand the pilot to the full system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


